Parallel Performance of a 3D Elliptic Solver

It was recently shown that block-circulant preconditioners applied to a conjugate gradient method used to solve structured sparse linear systems arising from 2D or 3D elliptic problems have good numerical properties and a potential for high parallel efficiency. In this note parallel performance of a circulant block-factorization based preconditioner applied to a 3D model problem is investigated. The aim of the presentation is to report on the experimental data obtained on SUN Enterprise 3000, SGI/Cray Origin 2000, Cray J-9x, Cray T3E computers and on two PC clusters.

[1]  W. Walker,et al.  Mpi: a Standard Message Passing Interface 1 Mpi: a Standard Message Passing Interface , 1996 .

[2]  Thomas Huckle,et al.  Some Aspects of Circulant Preconditioners , 1993, SIAM J. Sci. Comput..

[3]  Wolfgang Hackbusch,et al.  The frequency decomposition multi-grid method , 1992 .

[4]  Marcin Paprzycki,et al.  A Shared Memory Parallel Implementation of Block-Circulant Preconditioners , 1997, LSSC.

[5]  Yousef Saad,et al.  Data communication in parallel architectures , 1989, Parallel Comput..

[6]  Thomas Huckle,et al.  Circulant and Skewcirculant Matrices for Solving Toeplitz Matrix Problems , 1992, SIAM J. Matrix Anal. Appl..

[7]  Ivan Lirkov,et al.  Parallel Complexity of Conjugate Gradient Method with Circulant Preconditioners , 1996, Parcella.

[8]  Ivan Lirkov,et al.  PARALLEL COMPLEXITY OF CONJUGATE GRADIENT METHOD WITH CIRCULANT BLOCK-FACTORIZATION PRECONDITIONERS FOR 3D ELLIPTIC PROBLEMS , 1999 .

[9]  Panayot S. Vassilevski,et al.  Algebraic Multilevel Preconditioning of Anisotropic Elliptic Problems , 1994, SIAM J. Sci. Comput..

[10]  Raymond H. Chan,et al.  Circulant preconditioners for elliptic problems , 1992 .

[11]  Marcin Paprzycki,et al.  Parallel Conjugate Gradient Method with Circulant Block-Factorization Preconditioners for 3D Elliptic Problems , 1999, PPSC.

[12]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[13]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[14]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[15]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[16]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .