Traveling fronts guided by the environment for reaction-diffusion equations

This paper deals with the existence of traveling fronts guided by the medium for a KPP reaction-diffusion equation coming from a model in population dynamics in which there is spatial spreading as well as genetic mutation of a quantitative genetic trait that has a locally preferred value. The goal is to understand spreading and invasions in this heterogeneous context. We prove the existence of a threshold value on the existence of a nonzero asymptotic profile (a stationary limiting solution). When a nonzero asymptotic profile exists, we prove the existence of a traveling front. This allows us to completely identify the behavior of the solution of the parabolic problem in the KPP case. We also study here the bistable case. The equation provides a general framework for a model of cortical spreading depressions in the brain. We prove the existence of traveling front if the area where theere is reaction is large enough and the non-existence if it is too small.

[1]  Henri Berestycki,et al.  Generalized Transition Waves and Their Properties , 2010, 1012.0794.

[2]  Henri Berestycki,et al.  The non-local Fisher–KPP equation: travelling waves and steady states , 2009 .

[3]  Romain Joly,et al.  Asymptotic profiles for a travelling front solution of a biological equation , 2010, 1005.1729.

[4]  Guillemette Chapuisat,et al.  Existence and nonexistence of curved front solution of a biological equation , 2007 .

[5]  H C Tuckwell,et al.  Predictions and properties of a model of potassium and calcium ion movements during spreading cortical depression. , 1980, The International journal of neuroscience.

[6]  Robert D Holt,et al.  The Relation of Density Regulation to Habitat Specialization, Evolution of a Species’ Range, and the Dynamics of Biological Invasions , 2008, The American Naturalist.

[7]  Paul Rabinowitz,et al.  Pairs of Positive Solutions of Nonlinear Elliptic Partial Differential Equations , 1973 .

[8]  Henri Berestycki,et al.  Fronts and invasions in general domains , 2006 .

[9]  M. Lauritzen,et al.  Spreading and Synchronous Depressions of Cortical Activity in Acutely Injured Human Brain , 2002, Stroke.

[10]  Luca Rossi,et al.  On the principal eigenvalue of elliptic operators in $\R^N$ and applications , 2006 .

[11]  C. Stringer,et al.  Evolution of a species , 1985 .

[12]  M. Kirkpatrick,et al.  Evolution of a Species' Range , 1997, The American Naturalist.

[13]  Bruce E. Shapiro,et al.  Osmotic Forces and Gap Junctions in Spreading Depression: A Computational Model , 2004, Journal of Computational Neuroscience.

[14]  D. Nelson,et al.  Genetic drift at expanding frontiers promotes gene segregation , 2007, Proceedings of the National Academy of Sciences.

[15]  Avraham Mayevsky,et al.  Cortical spreading depression recorded from the human brain using a multiparametric monitoring system , 1996, Brain Research.

[16]  Oskar Hallatschek,et al.  LIFE AT THE FRONT OF AN EXPANDING POPULATION , 2008, Evolution; international journal of organic evolution.

[17]  G. Raoul,et al.  Travelling Waves in a Nonlocal Reaction-Diffusion Equation as a Model for a Population Structured by a Space Variable and a Phenotypic Trait , 2012 .

[18]  Oskar Hallatschek,et al.  Gene surfing in expanding populations. , 2007, Theoretical population biology.

[19]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[20]  Jean-Pierre Boissel,et al.  A modelling approach to explore some hypotheses of the failure of neuroprotective trials in ischemic stroke patients. , 2008, Progress in biophysics and molecular biology.

[21]  Wenxian Shen,et al.  Dynamical Systems and Traveling Waves in Almost Periodic Structures , 2001 .

[22]  Henri Berestycki,et al.  Perspectives in nonlinear partial differential equations : in honor of Haïm Brezis , 2007 .

[23]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[24]  L. Excoffier,et al.  Genetic Consequences of Range Expansions , 2009 .

[25]  Emmanuel Grenier,et al.  Existence and Nonexistence of Traveling Wave Solutions for a Bistable Reaction-Diffusion Equation in an Infinite Cylinder Whose Diameter is Suddenly Increased , 2005 .

[26]  J. Ross,et al.  Enhanced (hydrodynamic) transport induced by population growth in reaction-diffusion systems with application to population genetics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Henri Berestycki,et al.  Le nombre de solutions de certains problèmes semi-linéaires elliptiques , 1981 .

[28]  J. Keyser,et al.  Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing? , 1999, Trends in Neurosciences.

[29]  Hiroshi Matano,et al.  Asymptotic Behavior and Stability of Solutions of Semilinear Diffusion Equations , 1979 .

[30]  J.-F. Gerbeau,et al.  NUMERICAL STUDY OF THE STOPPING OF AURA DURING MIGRAINE , 2010 .

[31]  Hiroshi Matano,et al.  Bistable traveling waves around an obstacle , 2009 .

[32]  A. Gass,et al.  Failure to Demonstrate Peri-Infarct Depolarizations by Repetitive MR Diffusion Imaging in Acute Human Stroke , 2000, Stroke.

[33]  George W. Tyler,et al.  The Evolution of Species , 1871, The British and foreign medico-chirurgical review.

[34]  Henri Berestycki,et al.  Generalized travelling waves for reaction-diffusion equations , 2006 .

[35]  Jean-Michel Roquejoffre,et al.  A parabolic equation of the KPP type in higher dimensions , 1995 .

[36]  Rüdiger Köhling,et al.  Spreading depression in human neocortical slices , 2001, Brain Research.

[37]  Lenya Ryzhik,et al.  Existence and Non-Existence of Fisher-KPP Transition Fronts , 2010, 1012.2392.

[38]  H. Berestycki,et al.  Some applications of the method of super and subsolutions , 1980 .

[39]  Lambertus A. Peletier,et al.  Uniqueness of non-negative solutions of semilinear equations in Rn , 1986 .

[40]  Alain Destexhe,et al.  Ions in the Brain, Normal Function, Seizures, and Stroke, G.G. Somjen. Oxford University Press, Oxford, UK (2004), 432 pages, ISBN: 0195151712 , 2005 .

[41]  H. Berestycki,et al.  Une methode locale pour l’existence de solutions positives de problemes semi-lineaires elliptiques dans RN , 1980 .

[42]  Robert D Holt,et al.  Predation and the Evolutionary Dynamics of Species Ranges , 2011, The American Naturalist.

[43]  José M. Vega,et al.  Travelling wavefronts of reaction-di usion equations in cylindrical domains , 1993 .

[44]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[45]  Andrej Zlatoš,et al.  Generalized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability , 2009, 0901.2369.

[46]  M. Hommel,et al.  A global phenomenological model of ischemic stroke with stress on spreading depressions. , 2008, Progress in biophysics and molecular biology.

[47]  M. Nedergaard,et al.  Gap junctions are required for the propagation of spreading depression. , 1995, Journal of neurobiology.

[48]  Henri Berestycki,et al.  Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space , 2008 .

[49]  Lionel Roques,et al.  Allee effect promotes diversity in traveling waves of colonization , 2012, Proceedings of the National Academy of Sciences.