Protein translocation across membranes.

Many newly synthesized proteins must be translocated across a membrane to reach their final destinations. Translocation requires a signal on the protein itself, a loose conformation of the protein, energy, and receptor-like components in the cytosol and on the target membrane.

[1]  V. Lingappa,et al.  A former amino terminal signal sequence engineered to an internal location directs translocation of both flanking protein domains , 1985, The Journal of cell biology.

[2]  P. Model,et al.  An artificial anchor domain: hydrophobicity suffices to stop transfer , 1985, Cell.

[3]  T. Morimoto,et al.  Mechanisms for the incorporation of proteins in membranes and organelles , 1982, The Journal of cell biology.

[4]  G. Schatz,et al.  The presequences of two imported mitochondrial proteins contain information for intracellular and intramitochondrial sorting , 1986, Cell.

[5]  G. Blobel,et al.  70K heat shock related proteins stimulate protein translocation into microsomes , 1988, Nature.

[6]  W. Wickner,et al.  Trigger factor: a soluble protein that folds pro-OmpA into a membrane-assembly-competent form. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Beckwith,et al.  Genetic analysis of protein export in Escherichia coli. , 1990, Annual review of genetics.

[8]  Kaiser Et,et al.  Peptides with affinity for membranes. , 1987 .

[9]  W. Neupert,et al.  Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes , 1985, Cell.

[10]  S. Singer,et al.  On the translocation of proteins across membranes , 1987 .

[11]  P. Lazarow,et al.  Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential , 1987, The Journal of cell biology.

[12]  G. Blobel,et al.  Protein export in Escherichia coli requires a soluble activity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. P. Gibbs,et al.  Ochromonas mitochondria contain a specific chloroplast protein. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Schatz,et al.  Mutations restoring import of a yeast mitochondrial protein with a nonfunctional presequence. , 1988, The Journal of biological chemistry.

[15]  C. Hackenbrock Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D Botstein,et al.  Many random sequences functionally replace the secretion signal sequence of yeast invertase. , 1987, Science.

[17]  R. Schekman,et al.  SEC11 is required for signal peptide processing and yeast cell growth , 1988, The Journal of cell biology.

[18]  J. Clément,et al.  Sequence analysis of mutations that prevent export of λ receptor, an Escherichia coli outer membrane protein , 1980, Nature.

[19]  L. Gierasch,et al.  In vivo function and membrane binding properties are correlated for Escherichia coli lamB signal peptides. , 1985, Science.

[20]  R. A. Butow,et al.  Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria , 1975, The Journal of cell biology.

[21]  H. Shio,et al.  Peroxisomal membrane ghosts in Zellweger syndrome--aberrant organelle assembly. , 1988, Science.

[22]  L. Randall,et al.  Correlation of competence for export with lack of tertiary structure of the mature species: A study in vivo of maltose-binding protein in E. coli , 1986, Cell.

[23]  Gunnar von Heijne,et al.  Net N-C charge imbalance may be important for signal sequence function in bacteria , 1986 .

[24]  N. Chua,et al.  In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Kuhn,et al.  Bacteriophage M13 procoat protein inserts into the plasma membrane as a loop structure. , 1987, Science.

[26]  G. Blobel,et al.  Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis , 1986, The Journal of cell biology.

[27]  W. DeGrado,et al.  The interaction of calmodulin with amphiphilic peptides. , 1985, The Journal of biological chemistry.

[28]  T. Date,et al.  Demonstration by a Novel Genetic Technique That Leader Peptidase Is an Essential Enzyme of Escherichia coli , 1983, Journal of bacteriology.

[29]  T. Silhavy,et al.  Sequence information required for protein translocation from the cytoplasm , 1987, Journal of bacteriology.

[30]  G. Blobel,et al.  Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants , 1985, Cell.

[31]  M. Eilers,et al.  Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria , 1986, Nature.

[32]  M E Watson,et al.  Compilation of published signal sequences. , 1984, Nucleic acids research.

[33]  J. Rothman,et al.  Cell biology: An unfolding story of protein translocation , 1986, Nature.

[34]  H. Lodish,et al.  An internal signal sequence: The asialoglycoprotein receptor membrane anchor , 1986, Cell.

[35]  J. Rogers,et al.  Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin μ chain , 1980, Cell.

[36]  Société Française de Microbiologie Annales de microbiologie. , 1915 .

[37]  M. Pacaud Purification and characterization of two novel proteolytic enzymes in membranes of Escherichia coli. Protease IV and protease V. , 1982, The Journal of biological chemistry.

[38]  S. Emr,et al.  Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease , 1987, Cell.

[39]  W. Wickner,et al.  M13 procoat and a pre-immunoglobulin share processing specificity but use different membrane receptor mechanisms. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. Meyer,et al.  Secretion in yeast: Reconstitution of the translocation and glycosylation of α-factor and invertase in a homologous cell-free system , 1986, Cell.

[41]  M. Inouye,et al.  Amino acid sequence of the signal peptide of ompA protein, a major outer membrane protein of Escherichia coli. , 1980, The Journal of biological chemistry.

[42]  G. von Heijne,et al.  Signal sequences: The limits of variation , 1985 .

[43]  W. Wickner Mechanisms of membrane assembly: general lessons from the study of M13 coat protein and Escherichia coli leader peptidase. , 1988, Biochemistry.

[44]  D. S. Allison,et al.  Artificial mitochondrial presequences. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Gasser,et al.  How mitochondria import proteins. , 1984, Biochimica et biophysica acta.

[46]  P. Highfield,et al.  Synthesis and transport of the small subunit of chloroplast ribulose bisphosphate carboxylase , 1978, Nature.

[47]  T. Stevens,et al.  Protein sorting in yeast: The localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide , 1987, Cell.

[48]  P. Sorger,et al.  The glucose-regulated protein grp94 is related to heat shock protein hsp90. , 1987, Journal of molecular biology.

[49]  G. Blobel,et al.  Purification of microsomal signal peptidase as a complex. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Dobberstein,et al.  Secretory protein translocation across membranes—the role of the ‘docking protein’ , 1982, Nature.

[51]  W. Neupert,et al.  Characterization of translocation contact sites involved in the import of mitochondrial proteins , 1987, The Journal of cell biology.

[52]  H. Pelham Speculations on the functions of the major heat shock and glucose-regulated proteins , 1986, Cell.

[53]  M. Wittekind,et al.  A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins , 1983, Cell.

[54]  B. D. Davis,et al.  Energy-requiring translocation of the OmpA protein and alkaline phosphatase of Escherichia coli into inner membrane vesicles , 1984, Journal of bacteriology.

[55]  J. Beckwith,et al.  E. coli mutant pleiotropically defective in the export of secreted proteins , 1981, Cell.

[56]  M. Eilers,et al.  Protein unfolding and the energetics of protein translocation across biological membranes , 1988, Cell.

[57]  R. Schekman,et al.  A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum , 1987, The Journal of cell biology.

[58]  M. Wigler,et al.  RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor , 1986, Cell.

[59]  Gunnar von Heijne,et al.  On the Hydrophobic Nature of Signal Sequences , 1981 .

[60]  G. Blobel,et al.  Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones , 1988, Nature.

[61]  F. Hartl,et al.  Mitochondrial protein import: Identification of processing peptidase and of PEP, a processing enhancing protein , 1988, Cell.

[62]  T. Silhavy,et al.  Genetic analysis of protein export in Escherichia coli K12. , 1985, Annual review of biochemistry.

[63]  P. Walter,et al.  In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent post-translational translocation of the prepro-α-factor , 1986, Cell.

[64]  V. Lingappa,et al.  Determinants for protein localization: beta-lactamase signal sequence directs globin across microsomal membranes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. Lively,et al.  Purification and characterization of hen oviduct microsomal signal peptidase. , 1987, Biochemistry.

[66]  T. Rapoport,et al.  A signal sequence receptor in the endoplasmic reticulum membrane , 1987, Nature.

[67]  J. Ellis Genetic engineering: Eukaryotic proteins retargetted among cell compartments , 1985, Nature.

[68]  G. Schmidt,et al.  NH2-terminal amino acid sequences of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii , 1979, The Journal of cell biology.

[69]  G. Schatz 17th Sir Hans Krebs lecture. Signals guiding proteins to their correct locations in mitochondria. , 1987, European journal of biochemistry.

[70]  E. Hurt,et al.  A cytosolic protein contains a cryptic mitochondrial targeting signal , 1987, Nature.

[71]  J. Boeke,et al.  Fine structure of a membrane anchor domain. , 1985, Journal of molecular biology.

[72]  W. Gilbert,et al.  Bacteria mature preproinsulin to proinsulin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Beckwith,et al.  Genetic studies on protein export in bacteria. , 1986, Current topics in microbiology and immunology.

[74]  J. Beckwith,et al.  Use of gene fusion to study secretion of maltose-binding protein into Escherichia coli periplasm , 1979, Journal of bacteriology.

[75]  L. Randall,et al.  Modulation of folding pathways of exported proteins by the leader sequence. , 1988, Science.

[76]  W. Wickner,et al.  Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. , 1983, The Journal of biological chemistry.

[77]  W. J. Chen,et al.  An F1-ATPase beta-subunit precursor lacking an internal tetramer-forming domain is imported into mitochondria in the absence of ATP. , 1988, The Journal of biological chemistry.

[78]  P. Tai,et al.  Requirement of heat-labile cytoplasmic protein factors for posttranslational translocation of OmpA protein precursors into Escherichia coli membrane vesicles , 1988, Journal of bacteriology.

[79]  F. Nagy,et al.  Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants , 1987, Nature.

[80]  Elizabeth A. Craig,et al.  A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides , 1988, Nature.

[81]  P. De Camilli,et al.  Heterogeneous distribution of the cAMP receptor protein RII in the nervous system: evidence for its intracellular accumulation on microtubules, microtubule-organizing centers, and in the area of the Golgi complex , 1986, The Journal of cell biology.

[82]  H. Pelham Evidence that luminal ER proteins are sorted from secreted proteins in a post‐ER compartment. , 1988, The EMBO journal.

[83]  W. Neupert,et al.  Role of ATP in mitochondrial protein import. Conformational alteration of a precursor protein can substitute for ATP requirement. , 1988, The Journal of biological chemistry.

[84]  S. Bron,et al.  Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis , 1987, Journal of bacteriology.

[85]  H. Lodish,et al.  Multiple mechanisms of protein insertion into and across membranes. , 1985, Science.

[86]  M. Yaffe,et al.  Two nuclear mutations that block mitochondrial protein import in yeast. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. Meyer,et al.  The human docking protein does not associate with the membrane of the rough endoplasmic reticulum via a signal or insertion sequence-mediated mechanism. , 1988, Biochemical and biophysical research communications.

[88]  H. Ono,et al.  The cytosolic factor required for import of precursors of mitochondrial proteins into mitochondria. , 1988, The Journal of biological chemistry.

[89]  D. Meyer,et al.  1986: A year of new insights into how proteins cross membranes , 1986 .

[90]  D. Neville,et al.  Transmembrane transport of diphtheria toxin, related toxins, and colicins. , 1986, Annual review of biochemistry.

[91]  S. Gould,et al.  Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase , 1987, The Journal of cell biology.

[92]  Hisami Yamada,et al.  The major outer membrane lipoprotein and new lipoproteins share a common signal peptidase that exists in the cytoplasmic membrane of Escherichia coli , 1984, FEBS letters.

[93]  A. Baker,et al.  Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. , 1987, Proceedings of the National Academy of Sciences of the United States of America.