Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges

Abstract Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non‐invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra‐high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B1+ and B0 inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO‐specific RF pulses. Moreover, short T2* values at 9.4 T require short readout duration, and long T1 values at 9.4 T can cause blood‐inflow contaminations. In this study, we investigated the applicability of layer‐dependent CBV‐fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B1+ shimming parameters, advanced adiabatic RF‐pulses, 3D‐EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability‐optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV‐fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro‐circuitry in humans. Graphical abstract Figure. No Caption available. HighlightsCBV‐sensitive VASO was implemented at 9.4 T for layer‐dependent fMRI in humans.9.4 T VASO is challenging due to: blood‐inflow, SAR, T2*‐decay, B1+ and B0 constraints.Alternating pTx shimming and advanced adiabatic pulses can overcome these challenges.Layer‐dependent CBV changes can be reliably detected in human motor cortex at 9.4 T.

[1]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[2]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[3]  Anders M. Dale,et al.  Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation , 2007, NeuroImage.

[4]  Bryan M. Hooks,et al.  Circuit Changes in Motor Cortex During Motor Skill Learning , 2018, Neuroscience.

[5]  David G. Norris,et al.  Adiabatic radiofrequency pulse forms in biomedical nuclear magnetic resonance , 2002 .

[6]  Steen Moeller,et al.  T 1 weighted brain images at 7 Tesla unbiased for Proton Density, T 2 ⁎ contrast and RF coil receive B 1 sensitivity with simultaneous vessel visualization , 2009, NeuroImage.

[7]  Laurentius Huber,et al.  Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications , 2018, NeuroImage.

[8]  Jun Hua,et al.  Implementation of vascular‐space‐occupancy MRI at 7T , 2013, Magnetic resonance in medicine.

[9]  Adam G. Thomas,et al.  Fast dynamic measurement of functional T1 and grey matter thickness changes during brain activation at 7T , 2017 .

[10]  E. Sell [Functional magnetic resonance]. , 2007, Medicina.

[11]  Robert Turner,et al.  Slab‐selective, BOLD‐corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal‐to‐noise ratio , 2014, Magnetic resonance in medicine.

[12]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[13]  Harald E. Möller,et al.  Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2 , 2017, NeuroImage.

[14]  Klaus Scheffler,et al.  Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 t , 2016, Magnetic resonance in medicine.

[15]  Weili Lin,et al.  A fast, iterative, partial-fourier technique capable of local phase recovery , 1991 .

[16]  Souheil J Inati,et al.  Improvement of temporal signal‐to‐noise ratio of GRAPPA accelerated echo planar imaging using a FLASH based calibration scan , 2016, Magnetic resonance in medicine.

[17]  Daniel K Sodickson,et al.  Approaching Ultimate Intrinsic SNR in a Uniform Spherical Sample with Finite Arrays of Loop Coils. , 2014, Concepts in magnetic resonance. Part B, Magnetic resonance engineering.

[18]  R. Turner,et al.  Slab-selective, BOLD-corrected VASO (SS-VASO) in human brain at 7T , 2012 .

[19]  Essa Yacoub,et al.  fMRI at High Magnetic Field: Spatial Resolution Limits and Applications , 2015 .

[20]  Keith J. Worsley,et al.  Statistical analysis of activation images , 2001 .

[21]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[22]  E. Adalsteinsson,et al.  Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels , 2008, Magnetic resonance in medicine.

[23]  Harald E. Möller,et al.  Functional cerebral blood volume mapping with simultaneous multi-slice acquisition , 2016, NeuroImage.

[24]  Kawin Setsompop,et al.  Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field , 2017, NeuroImage.

[25]  D. G. Norris,et al.  Layer Specific Bold Activation in Human V1 at 3 Tesla , 2022 .

[26]  Klaus Scheffler,et al.  A 16‐channel dual‐row transmit array in combination with a 31‐element receive array for human brain imaging at 9.4 T , 2014, Magnetic resonance in medicine.

[27]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[28]  Uwe Aickelin,et al.  Tailored RF pulse for magnetization inversion at ultrahigh field , 2010, Magnetic resonance in medicine.

[29]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[30]  P. Bandettini,et al.  Single‐shot half k‐space high‐resolution gradient‐recalled EPI for fMRI at 3 tesla , 1998, Magnetic resonance in medicine.

[31]  K. Uğurbil,et al.  Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths. , 2007, Magnetic resonance imaging.

[32]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[33]  Klaus Scheffler,et al.  Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays , 2016, Magnetic resonance in medicine.

[34]  J. Pekar,et al.  Functional magnetic resonance imaging based on changes in vascular space occupancy , 2003, Magnetic resonance in medicine.

[35]  Cornelis A T van den Berg,et al.  Time efficient design of multi dimensional RF pulses: Application of a multi shift CGLS algorithm , 2011, Magnetic resonance in medicine.

[36]  Harald E. Möller,et al.  Mapping of arterial transit time by intravascular signal selection , 2014, NMR in biomedicine.

[37]  Laurentius Huber,et al.  Simple approach to improve time series fMRI stability: STAbility-weighted Rf-coil Combination (STARC) , 2017 .

[38]  Klaus Scheffler,et al.  Volumetric imaging with homogenised excitation and static field at 9.4 T , 2016, Magnetic Resonance Materials in Physics, Biology and Medicine.

[39]  Seong-Gi Kim,et al.  Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles , 2013, NMR in biomedicine.

[40]  Kâmil Uludag,et al.  Linking brain vascular physiology to hemodynamic response in ultra-high field MRI , 2017, NeuroImage.

[41]  P. Börnert,et al.  Ventricular B1+ perturbation at 7 T – real effect or measurement artifact? , 2014, NMR in biomedicine.

[42]  Tao Jin,et al.  Spatial dependence of CBV-fMRI: a comparison between VASO and contrast agent based methods , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[43]  Peter C M van Zijl,et al.  Experimental measurement of extravascular parenchymal BOLD effects and tissue oxygen extraction fractions using multi‐echo VASO fMRI at 1.5 and 3.0 T , 2005, Magnetic resonance in medicine.

[44]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[45]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[46]  Klaas E. Stephan,et al.  Laminar fMRI and computational theories of brain function , 2017, NeuroImage.

[47]  J. Pekar,et al.  Hemodynamic Changes after Visual Stimulation and Breath Holding Provide Evidence for an Uncoupling of Cerebral Blood Flow and Volume from Oxygen Metabolism , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[48]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[49]  D. Tank,et al.  4 Tesla gradient recalled echo characteristics of photic stimulation‐induced signal changes in the human primary visual cortex , 1993 .

[50]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[51]  Essa Yacoub,et al.  High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4 T , 2018, NeuroImage.

[52]  Yulin Ge,et al.  Baseline blood oxygenation modulates response amplitude: Physiologic basis for intersubject variations in functional MRI signals , 2008, Magnetic resonance in medicine.

[53]  Lars Muckli,et al.  Laminar fMRI: Applications for cognitive neuroscience , 2017, NeuroImage.

[54]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[55]  Kotaro Ikeda,et al.  Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study , 2009, Neuroreport.

[56]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[57]  Robert Turner,et al.  Analysis of Transmit Performance Optimization Strategies for Multi Channel MRI Array , 2011 .

[58]  J. Griffiths,et al.  RF Coils for MRI , 2012 .

[59]  Peter Andersen,et al.  9.4T human MRI: Preliminary results , 2006, Magnetic resonance in medicine.

[60]  Dimo Ivanov,et al.  Impact of acquisition and analysis strategies on cortical depth-dependent fMRI , 2017, NeuroImage.

[61]  Peter C M van Zijl,et al.  Effect of inflow of fresh blood on vascular‐space‐occupancy (VASO) contrast , 2009, Magnetic resonance in medicine.

[62]  Lawrence L. Wald,et al.  Automatic cortical surface reconstruction of high-resolution T 1 echo planar imaging data , 2016, NeuroImage.

[63]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[64]  Robin M Heidemann,et al.  Autocalibrated coil sensitivity estimation for parallel imaging , 2006, NMR in biomedicine.

[65]  J. Butman,et al.  Whole‐brain cerebral blood flow mapping using 3D echo planar imaging and pulsed arterial tagging , 2011, Journal of magnetic resonance imaging : JMRI.

[66]  Leif Østergaard,et al.  Cerebral Blood Flow, Blood Volume, and Oxygen Metabolism Dynamics in Human Visual and Motor Cortex as Measured by Whole-Brain Multi-Modal Magnetic Resonance Imaging , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[67]  J. Gordon,et al.  On being a circuit psychiatrist , 2016, Nature Neuroscience.

[68]  Tao Jin,et al.  Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T , 2008, NeuroImage.

[69]  Leonie Lampe,et al.  Lamina-dependent calibrated BOLD response in human primary motor cortex , 2016, NeuroImage.

[70]  Robert Turner,et al.  The Magnitude Point Spread Function is an Inadequate Measure of T2*-Blurring in EPI , 2015 .

[71]  Elfar Adalsteinsson,et al.  Online Local SAR Supervision for Transmit Arrays at 7 T , 2012 .

[72]  Jianing Yu,et al.  Top-down laminar organization of the excitatory network in motor cortex , 2008, Nature Neuroscience.

[73]  J. Mayhew,et al.  Concurrent fMRI and optical measures for the investigation of the hemodynamic response function , 2005, Magnetic resonance in medicine.