Control of nonlinear chemical processes using neural models and feedback linearization

Black-box modeling techniques based on artificial neural networks are opening new horizons for the modeling and control nonlinear processes in biotechnology and the chemical process industries. The link between dynamic process models and actual process control is provided by the concept of model-based control (MBC), e.g. internal model control (IMC) or model-based predictive control (MBPC). To avoid time-consuming calculations, feedback-linearization techniques are used to linearize the nonlinear process model. The resulting linear model then is used in a linear MBC scheme, allowing for standard linear control techniques to be applied. Two methods of input-output feedback linearization are described in combination with the use of neural process models: the exact input-output feedback linearization and the approximate input-output feedback linearization. The proposed methods are applied to a MISO (multi-input single-output) laboratory-scale pressure process, which shows good results compared to conventional linear techniques.

[1]  Alberto Isidori,et al.  On approximate linearization of nonlinear control systems , 1993 .

[2]  Henk B. Verbruggen,et al.  Design and real time testing of a neural model predictive controller for a nonlinear system , 1995 .

[3]  Arjan van der Schaft,et al.  Some recent developments in nonlinear control , 1993 .

[4]  M. A. Henson,et al.  Input‐output linearization of general nonlinear processes , 1990 .

[5]  D. C. Psichogios,et al.  Direct and indirect model based control using artificial neural networks , 1991 .

[6]  D. Normand-Cyrot,et al.  Minimum-phase nonlinear discrete-time systems and feedback stabilization , 1987, 26th IEEE Conference on Decision and Control.

[7]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[8]  K. Najim,et al.  Control of a bioreactor using a neural network , 1993 .

[9]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[10]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[11]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[12]  C. Kravaris,et al.  Geometric methods for nonlinear process control. 1. Background , 1990 .

[13]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[14]  Ton J.J. van den Boom,et al.  Constrained Nonlinear Predictive Control Based on Input-Output Linearization Using a Neural Network , 1996 .

[15]  B. Bequette Nonlinear control of chemical processes: a review , 1991 .

[16]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[17]  M. A. Henson,et al.  Critique of exact linearization strategies for process control , 1991 .

[18]  Thomas J. Mc Avoy,et al.  Use of Neural Nets For Dynamic Modeling and Control of Chemical Process Systems , 1989, 1989 American Control Conference.

[19]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[20]  Costas Kravaris,et al.  Geometric methods for nonlinear process control. 2. Controller synthesis , 1990 .

[21]  Mark A. Kramer,et al.  Modeling chemical processes using prior knowledge and neural networks , 1994 .

[22]  Lennart Ljung,et al.  Nonlinear Black Box Modeling in System Identification , 1995 .

[23]  渡辺 桂吾,et al.  Adaptive estimation and control : partitioning approach , 1991 .

[24]  Michael Nikolaou,et al.  Control of nonlinear dynamical systems modeled by recurrent neural networks , 1993 .

[25]  Thomas F. Edgar,et al.  MODEL-BASED CONTROL: A SURVEY , 1992 .

[26]  A. Schaft Linearization and input-output decoupling for general nonlinear systems , 1984 .

[27]  Karel Ch. A. M. Luyben,et al.  Strategy for dynamic process modeling based on neural networks in macroscopic balances , 1996 .

[28]  J. Lévine,et al.  Nonlinear control of biotechnological processes with growth-production decoupling. , 1993, Mathematical Biosciences.

[29]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[30]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[31]  Heikki N. Koivo,et al.  Properties of the Neural Network Internal Model Controller , 1992 .

[32]  Dale E. Seborg,et al.  Nonlinear internal model control strategy for neural network models , 1992 .

[33]  Wei Kang Approximate linearization of nonlinear control systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.