Optimal Robust Stabilization and Dissipativity Synthesis by Behavioral Interconnection

Given a nominal plant, together with a fixed neighborhood of this plant, the problem of robust stabilization is to find a controller that stabilizes all plants in that neighborhood (in an appropriate sense). If a controller achieves this design objective, we say that it robustly stabilizes the nominal plant. In this paper we formulate the robust stabilization problem in a behavioral framework, with control as interconnection. We also formulate a relevant behavioral $\mathcal{H}_{\infty}$ synthesis problem, which will be instrumental in solving the robust stabilization problem. We use both rational and polynomial representations for the behaviors under consideration. Necessary and sufficient conditions for the existence of robustly stabilizing controllers are obtained using the theory of dissipative systems. We will also find the optimal stability radius, i.e., the smallest upper bound on the radii of the neighborhoods for which there exists a robustly stabilizing controller. This smallest upper bound is expressed in terms of certain storage functions associated with nominal control system.

[1]  J. Willems,et al.  Behaviors Defined by Rational Functions , 2007, Proceedings of the 45th IEEE Conference on Decision and Control.

[2]  J. Willems,et al.  Every storage function is a state function , 1997 .

[3]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[4]  J. Willems,et al.  Stability theory for high order equations , 1992 .

[5]  Tamer Basar Dissipative Dynamical SystemsPart I: General Theory , 2001 .

[6]  J. Willems,et al.  State Maps for Linear Systems , 1997 .

[7]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .

[8]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[9]  André C. M. Ran,et al.  Factorization of Matrix Polynomials with Symmetries , 1994, SIAM J. Matrix Anal. Appl..

[10]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[11]  Harry L. Trentelman,et al.  H∞ control in a behavioral context: the full information case , 1999, IEEE Trans. Autom. Control..

[12]  Madhu N. Belur,et al.  Control in a behavioral context , 2003 .

[13]  F. Callier On polynomial matrix spectral factorization by symmetric extraction , 1985 .

[14]  L.C.G.J.M. Habets,et al.  Book review: Introduction to mathematical systems theory, a behavioral approach , 2000 .

[15]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[16]  Harry L. Trentelman,et al.  Stabilization, pole placement, and regular implementability , 2002, IEEE Trans. Autom. Control..

[17]  Gjerrit Meinsma FA 8-9 : 40 On Strict Passivity and its Application to Interpolation and & , Control , 2004 .

[18]  Stephen J. Sangwine,et al.  Frequency domain methods , 1998 .

[19]  Harry L. Trentelman,et al.  The strict dissipativity synthesis problem and the rank of the coupling QDF , 2004, Syst. Control. Lett..

[20]  J. Willems On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..

[21]  J. Willems,et al.  The Dissipation Inequality and the Algebraic Riccati Equation , 1991 .

[22]  J. Willems,et al.  Synthesis of dissipative systems using quadratic differential forms: part II , 2002, IEEE Trans. Autom. Control..

[23]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[24]  Paul A. Fuhrmann,et al.  A functional approach to the Stein equation , 2010 .

[25]  Harry L. Trentelman,et al.  On quadratic differential forms , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[26]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[27]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[28]  H. Kwakernaak,et al.  Polynomial J-spectral factorization , 1994, IEEE Trans. Autom. Control..