Free-Space Optical Channel Models

This chapter focuses on statistical description, physical characteristics, and modeling of free-space optical channel. The primary factors characterizing an atmospheric communication channel include atmospheric attenuation (both due to scattering and absorption) and turbulence. This chapter will provide good understanding of various types of atmospheric losses due to absorption, scattering, and turbulence. Section 2.1 presents various types of atmospheric losses due to molecular constituents and particulates present in the atmosphere. Although absorption and scattering significantly decrease the power level of the transmitted beam, the random fluctuations in the intensity of received signal due to turbulence in the atmosphere can severely degrade the wavefront quality of the transmitted beam. Statistical description of atmospheric turbulence and its effect on Gaussian beam will be discussed in this section. Section 2.2 presents various turbulence channel models. Finally, Sect. 2.3 describes various techniques to mitigate the effect of atmospheric turbulence.

[1]  L C Andrews,et al.  Optical scintillations and fade statistics for a satellite-communication system. , 1995, Applied optics.

[2]  Wayne K. Hocking,et al.  Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review , 1985 .

[3]  G. Charmaine Gilbreath,et al.  Estimating optical turbulence using the PAMELA model , 2004, SPIE Optics + Photonics.

[4]  M. Brandt-Pearce,et al.  Adaptive coding and modulation for hybrid FSO/RF systems , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[5]  Monish Ranjan Chatterjee,et al.  Modeling of power spectral density of modified von Karman atmospheric phase turbulence and acousto-optic chaos using scattered intensity profiles over discrete time intervals , 2014, Optics & Photonics - Optical Engineering + Applications.

[6]  George K. Karagiannidis,et al.  Optical wireless links with spatial diversity over strong atmospheric turbulence channels , 2009, IEEE Transactions on Wireless Communications.

[7]  Isaac I. Kim,et al.  Availability of free-space optics (FSO) and hybrid FSO/RF systems , 2001, SPIE ITCom.

[8]  Aaron D. Wyner,et al.  Capacity and error exponent for the direct detection photon channel-Part I , 1988, IEEE Trans. Inf. Theory.

[9]  Tan Le,et al.  On the Capacity of Hybrid Wireless Networks with Opportunistic Routing , 2009 .

[10]  Isaac I. Kim,et al.  Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications , 2001, SPIE Optics East.

[11]  Mohsen Kavehrad,et al.  Availability Evaluation of Ground-to-Air Hybrid FSO/RF Links , 2007, Int. J. Wirel. Inf. Networks.

[12]  John R. Spletzer,et al.  Hybrid Free-Space Optics/Radio Frequency (FSO/RF) Networks for Mobile Robot Teams , 2005 .

[13]  R. B. McQuistan,et al.  Elements of infrared technology: generation, transmission, and detection , 1962 .

[14]  H. Yura,et al.  Optical scintillation statistics for IR ground-to-space laser communication systems. , 1983, Applied optics.

[15]  R. Tyson,et al.  Adaptive optics and ground-to-space laser communications. , 1996, Applied optics.

[16]  A L Buck Effects of the atmosphere on laser beam propagation. , 1967, Applied optics.

[17]  James H. Brown,et al.  A Model for Csubn(2) (Optical Turbulence) Profiles Using Radiosonde Data , 1993 .

[18]  G. Venkateswara Rao,et al.  Hybrid Cluster Based Routing Protocol for Free-Space Optical Mobile Ad hoc Networks (FSO/RF MANET) , 2013 .

[19]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[20]  Scott Bloom,et al.  THE PHYSICS OF FREE-SPACE OPTICS , 2001 .

[21]  R. K. Long Atmospheric attenuation of ruby lasers , 1963 .

[22]  Mohsen Kavehrad,et al.  BER Performance of Free-Space Optical Transmission with Spatial Diversity , 2007, IEEE Transactions on Wireless Communications.

[23]  Peter G. LoPresti,et al.  On the Capacity of Hybrid FSO/RF Links , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[24]  Etty J. Lee,et al.  Part 1: optical communication over the clear turbulent atmospheric channel using diversity , 2004, IEEE Journal on Selected Areas in Communications.

[25]  Aaron D. Wyner,et al.  Capacity and error-exponent for the direct detection photon channel-Part II , 1988, IEEE Trans. Inf. Theory.

[26]  David L. Fried,et al.  Aperture Averaging of Scintillation , 1967 .

[27]  David H. Tofsted,et al.  An Atmospheric Turbulence Profile Model for Use in Army Wargaming Applications I , 2006 .

[28]  A. Jursa,et al.  Handbook of geophysics and the space environment , 1985 .

[29]  C.C. Davis,et al.  Hybrid free space optical/RF networks for tactical operations , 2004, IEEE MILCOM 2004. Military Communications Conference, 2004..

[30]  Giwan Yoon,et al.  Average Bit-Error Rate of the Alamouti Scheme in Gamma-Gamma Fading Channels , 2011, IEEE Photonics Technology Letters.

[31]  Hamid Hemmati,et al.  Near-Earth Laser Communications , 2009, Near-Earth Laser Communications.

[32]  Norman S. Kopeika,et al.  Measured profiles of aerosols and turbulence for elevations of 2 to 20 km and consequences of widening of laser beams , 2001, SPIE LASE.

[33]  R. Hufnagel,et al.  Modulation Transfer Function Associated with Image Transmission through Turbulent Media , 1964 .

[34]  V. I. Tatarskii The effects of the turbulent atmosphere on wave propagation , 1971 .

[35]  Jolly Parikh,et al.  Study on statistical models of atmospheric channel for FSO communication link , 2011, 2011 Nirma University International Conference on Engineering.

[36]  Yongxiong Ren,et al.  Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius. , 2010, Optics letters.

[37]  Hervé Sizun,et al.  Fog attenuation prediction for optical and infrared waves , 2004 .

[38]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  Norman S. Kopeika,et al.  Laser beam widening as a function of elevation in the atmosphere for horizontal propagation , 2001, SPIE Defense + Commercial Sensing.

[40]  George S. Tombras,et al.  Performance analysis of free-space optical communication systems over atmospheric turbulence channels , 2009, IET Commun..

[41]  Larry C. Andrews,et al.  Single-pass and double-pass propagation through complex paraxial optical systems , 1995 .

[42]  G. Valley Isoplanatic degradation of tilt correction and short-term imaging systems. , 1980, Applied optics.

[43]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[44]  Mohsen Kavehrad,et al.  A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems , 2015, Journal of Lightwave Technology.

[45]  G. Charmaine Gilbreath,et al.  A comparison of optical turbulence models , 2004, SPIE Optics + Photonics.

[46]  J. Churnside,et al.  Wander of an optical beam in the turbulent atmosphere. , 1990, Applied optics.

[47]  Zabih Ghassemlooy,et al.  Terrestrial Free-Space Optical Communications , 2010 .

[48]  Sarma Vangala,et al.  Hybrid Channel Codes for Efficient FSO/RF Communication Systems , 2010, IEEE Transactions on Communications.

[49]  Mark A. Shayman,et al.  Routing and traffic engineering in hybrid RF/FSO networks , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[50]  V. I. Tatarskiĭ,et al.  Wave propagation through random media , 1989 .

[51]  Wayne K. Hocking,et al.  Measurement of turbulent kinetic energy dissipation rates in the mesosphere by a 3 MHz Doppler radar , 2005 .

[52]  Heinz Willebrand,et al.  Free Space Optics: Enabling Optical Connectivity in Today's Networks , 2001 .

[53]  Steen G. Hanson,et al.  Second-order statistics for wave propagation through complex optical systems , 1988 .

[54]  Mehdi Rouissat,et al.  Free Space Optical Channel Characterization and Modeling with Focus on Algeria Weather Conditions , 2012 .

[55]  S. Karp Optical channels : fibers, clouds, water, and the atmosphere , 1988 .

[56]  P J Titterton Power reduction and fluctuations caused by narrow laser beam motion in the far field. , 1973, Applied optics.

[57]  H. Weichel Laser Beam Propagation in the Atmosphere , 1990 .

[58]  L. Andrews,et al.  Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects , 2006 .

[59]  S. Chia,et al.  The next challenge for cellular networks: backhaul , 2009, IEEE Microwave Magazine.

[60]  Harilaos G Sandalidis Performance Analysis of a Laser Ground-Station-to-Satellite Link With Modulated Gamma-Distributed Irradiance Fluctuations , 2010, IEEE/OSA Journal of Optical Communications and Networking.

[61]  J. R. Clark Optical communications , 1977, Proceedings of the IEEE.