On the Linear Independence of Spikes and Sines

The purpose of this work is to survey what is known about the linear independence of spikes and sines. The paper provides new results for the case where the locations of the spikes and the frequencies of the sines are chosen at random. This problem is equivalent to studying the spectral norm of a random submatrix drawn from the discrete Fourier transform matrix. The proof depends on an extrapolation argument of Bourgain and Tzafriri.

[1]  Chebyshev approximation to zero , 1965 .

[2]  S. M. Samuels,et al.  Monotone Convergence of Binomial Probabilities and a Generalization of Ramanujan's Equation , 1968 .

[3]  Polynomials of fixed sign that deviate least from zero in the spaces LP , 1985 .

[4]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[5]  J. Bourgain,et al.  On a problem of Kadison and Singer. , 1991 .

[6]  B. Logan,et al.  Signal recovery and the large sieve , 1992 .

[7]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[8]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[9]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[10]  A. Buchholz Operator Khintchine inequality in non-commutative probability , 2001 .

[11]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[12]  T. Tao An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.

[13]  H. Rauhut Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.

[14]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[15]  G. Jameson Notes on the large sieve , 2006 .

[16]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[17]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[18]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[19]  J. Tropp The random paving property for uniformly bounded matrices , 2006, math/0612070.

[20]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[21]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[22]  J. Tropp On the conditioning of random subdictionaries , 2008 .