Exploring the Dynamics of a Third-Order Phase-Locked Loop Model
暂无分享,去创建一个
[1] I. L. Caldas,et al. Replicate periodic windows in the parameter space of driven oscillators , 2011 .
[2] Holokx A. Albuquerque,et al. Extensive Numerical Study and Circuitry Implementation of the Watt Governor Model , 2017, Int. J. Bifurc. Chaos.
[3] C. Manchein,et al. The effect of temperature on generic stable periodic structures in the parameter space of dissipative relativistic standard map , 2017, 1703.00413.
[4] Diogo Ricardo da Costa,et al. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps , 2016 .
[5] Thorsten Pöschel,et al. Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] Jason A. C. Gallas,et al. Spiking Systematics in Some CO2 Laser Models , 2016 .
[7] B. Harb,et al. The half-plane pull-in range of a second-order phase-locked loop , 1996 .
[8] J. Gallas,et al. Structure of the parameter space of the Hénon map. , 1993, Physical review letters.
[9] José Roberto Castilho Piqueira. Hopf bifurcation and chaos in a third-order phase-locked loop , 2017, Commun. Nonlinear Sci. Numer. Simul..
[10] Ralf Eichhorn,et al. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows , 1998 .
[11] A Celestino,et al. Ratchet transport and periodic structures in parameter space. , 2011, Physical review letters.
[12] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[13] Marko Robnik,et al. Shrimp-shape domains in a dissipative kicked rotator. , 2011, Chaos.
[14] A. Harb,et al. Chaos and bifurcation in a third-order phase locked loop , 2004 .
[15] M. Baptista,et al. Parameter space of experimental chaotic circuits with high-precision control parameters. , 2016, Chaos.
[16] Nikolay V. Kuznetsov,et al. Hold-In, Pull-In, and Lock-In Ranges of PLL Circuits: Rigorous Mathematical Definitions and Limitations of Classical Theory , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.
[17] Paulo C. Rech,et al. Chaos, Periodicity, and Quasiperiodicity in a Radio-Physical Oscillator , 2017, Int. J. Bifurc. Chaos.
[18] Edward N. Lorenz,et al. Compound windows of the Hénon-map , 2008 .
[19] Tamás Tél,et al. The joy of transient chaos. , 2015, Chaos.
[20] C. Manchein,et al. Temperature resistant optimal ratchet transport. , 2012, Physical review letters.
[21] J. Gallas,et al. Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[22] J. Stensby,et al. Saddle node bifurcation at a nonhyperbolic limit cycle in a phase locked loop , 1993 .
[23] José Roberto Castilho Piqueira,et al. Design constraints for third-order PLL nodes in master-slave clock distribution networks , 2010 .
[24] J. Piqueira. Using bifurcations in the determination of lock-in ranges for third-order phase-locked loops , 2009 .
[25] Holokx A. Albuquerque,et al. Bifurcation structures and transient chaos in a four-dimensional Chua model , 2013, 1312.1933.
[26] Dushan Boroyevich,et al. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems , 2011, IEEE Transactions on Industrial Electronics.
[27] J. Balthazar,et al. Phase-Locked Loop design applied to frequency-modulated atomic force microscope , 2011 .
[28] Jason A. C. Gallas,et al. Periodic oscillations of the forced Brusselator , 2015 .
[29] A. Harb,et al. Chaos control of third-order phase-locked loops using backstepping nonlinear controller , 2004 .
[30] J. G. Freire,et al. Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems , 2011 .
[31] Holokx A. Albuquerque,et al. Stable structures in parameter space and optimal ratchet transport , 2014, Commun. Nonlinear Sci. Numer. Simul..
[32] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .