Exploring the Dynamics of a Third-Order Phase-Locked Loop Model

We study the dynamics and characterize the bifurcation structure of a phase-locked loop (PLL) device modeled by a third-order autonomous differential equation with sinusoidal phase detector. The de...

[1]  I. L. Caldas,et al.  Replicate periodic windows in the parameter space of driven oscillators , 2011 .

[2]  Holokx A. Albuquerque,et al.  Extensive Numerical Study and Circuitry Implementation of the Watt Governor Model , 2017, Int. J. Bifurc. Chaos.

[3]  C. Manchein,et al.  The effect of temperature on generic stable periodic structures in the parameter space of dissipative relativistic standard map , 2017, 1703.00413.

[4]  Diogo Ricardo da Costa,et al.  The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps , 2016 .

[5]  Thorsten Pöschel,et al.  Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Jason A. C. Gallas,et al.  Spiking Systematics in Some CO2 Laser Models , 2016 .

[7]  B. Harb,et al.  The half-plane pull-in range of a second-order phase-locked loop , 1996 .

[8]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[9]  José Roberto Castilho Piqueira Hopf bifurcation and chaos in a third-order phase-locked loop , 2017, Commun. Nonlinear Sci. Numer. Simul..

[10]  Ralf Eichhorn,et al.  Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows , 1998 .

[11]  A Celestino,et al.  Ratchet transport and periodic structures in parameter space. , 2011, Physical review letters.

[12]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[13]  Marko Robnik,et al.  Shrimp-shape domains in a dissipative kicked rotator. , 2011, Chaos.

[14]  A. Harb,et al.  Chaos and bifurcation in a third-order phase locked loop , 2004 .

[15]  M. Baptista,et al.  Parameter space of experimental chaotic circuits with high-precision control parameters. , 2016, Chaos.

[16]  Nikolay V. Kuznetsov,et al.  Hold-In, Pull-In, and Lock-In Ranges of PLL Circuits: Rigorous Mathematical Definitions and Limitations of Classical Theory , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Paulo C. Rech,et al.  Chaos, Periodicity, and Quasiperiodicity in a Radio-Physical Oscillator , 2017, Int. J. Bifurc. Chaos.

[18]  Edward N. Lorenz,et al.  Compound windows of the Hénon-map , 2008 .

[19]  Tamás Tél,et al.  The joy of transient chaos. , 2015, Chaos.

[20]  C. Manchein,et al.  Temperature resistant optimal ratchet transport. , 2012, Physical review letters.

[21]  J. Gallas,et al.  Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  J. Stensby,et al.  Saddle node bifurcation at a nonhyperbolic limit cycle in a phase locked loop , 1993 .

[23]  José Roberto Castilho Piqueira,et al.  Design constraints for third-order PLL nodes in master-slave clock distribution networks , 2010 .

[24]  J. Piqueira Using bifurcations in the determination of lock-in ranges for third-order phase-locked loops , 2009 .

[25]  Holokx A. Albuquerque,et al.  Bifurcation structures and transient chaos in a four-dimensional Chua model , 2013, 1312.1933.

[26]  Dushan Boroyevich,et al.  Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems , 2011, IEEE Transactions on Industrial Electronics.

[27]  J. Balthazar,et al.  Phase-Locked Loop design applied to frequency-modulated atomic force microscope , 2011 .

[28]  Jason A. C. Gallas,et al.  Periodic oscillations of the forced Brusselator , 2015 .

[29]  A. Harb,et al.  Chaos control of third-order phase-locked loops using backstepping nonlinear controller , 2004 .

[30]  J. G. Freire,et al.  Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems , 2011 .

[31]  Holokx A. Albuquerque,et al.  Stable structures in parameter space and optimal ratchet transport , 2014, Commun. Nonlinear Sci. Numer. Simul..

[32]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .