Machine learning methods for pKaprediction of small molecules: advances and challenges.

[1]  Hualiang Jiang,et al.  Graph neural network approaches for drug-target interactions. , 2022, Current opinion in structural biology.

[2]  T. Langer,et al.  Improving Small Molecule pK a Prediction Using Transfer Learning With Graph Neural Networks , 2022, bioRxiv.

[3]  Feisheng Zhong,et al.  Multi-instance learning of graph neural networks for aqueous pKa prediction , 2021, Bioinform..

[4]  S. Jang,et al.  DFT-Machine Learning Approach for Accurate Prediction of pKa. , 2021, The journal of physical chemistry. A.

[5]  Stefan M. Kast,et al.  SAMPL7 physical property prediction from EC-RISM theory , 2021, Journal of Computer-Aided Molecular Design.

[6]  John Z. H. Zhang,et al.  MolGpka: A Web Server for Small Molecule pKa Prediction Using a Graph-Convolutional Neural Network , 2021, J. Chem. Inf. Model..

[7]  Carles Curutchet,et al.  Prediction of n-octanol/water partition coefficients and acidity constants (pKa) in the SAMPL7 blind challenge with the IEFPCM-MST model , 2021, Journal of Computer-Aided Molecular Design.

[8]  V. Aviyente,et al.  SAMPL7 blind challenge: quantum–mechanical prediction of partition coefficients and acid dissociation constants for small drug-like molecules , 2021, Journal of Computer-Aided Molecular Design.

[9]  Nicolas Tielker,et al.  Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge , 2021, Journal of Computer-Aided Molecular Design.

[10]  Kaixian Chen,et al.  Graph neural networks for automated de novo drug design. , 2021, Drug discovery today.

[11]  Beth A. Caine,et al.  Enhancing Carbon Acid pKa Prediction by Augmentation of Sparse Experimental Datasets with Accurate AIBL (QM) Derived Values , 2021, Molecules.

[12]  G. Monard,et al.  Using Atomic Charges to Describe the pKa of Carboxylic Acids , 2020, J. Chem. Inf. Model..

[13]  Thierry Langer,et al.  A compact review of molecular property prediction with graph neural networks. , 2020, Drug discovery today. Technologies.

[14]  Ariën S. Rustenburg,et al.  Overview of the SAMPL6 pKa Challenge: Evaluating small molecule microscopic and macroscopic pKa predictions , 2020, bioRxiv.

[15]  Yao Li,et al.  Holistic Prediction of pKa in Diverse Solvents Based on Machine Learning Approach. , 2020, Angewandte Chemie.

[16]  Michael J. Keiser,et al.  Learning Molecular Representations for Medicinal Chemistry. , 2020, Journal of medicinal chemistry.

[17]  Peter A Hunt,et al.  Predicting pKa Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods , 2020, J. Chem. Inf. Model..

[18]  A. Avdeef Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database , 2020, ADMET & DMPK.

[19]  Paul Czodrowski,et al.  Machine learning meets pK a , 2020, F1000Research.

[20]  Beth A. Caine,et al.  Aqueous pKa prediction for tautomerizable compounds using equilibrium bond lengths , 2019, Communications Chemistry.

[21]  Xiaomin Luo,et al.  Pushing the boundaries of molecular representation for drug discovery with graph attention mechanism. , 2020, Journal of medicinal chemistry.

[22]  Peter Gedeck,et al.  Prediction of pKa Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines , 2019, J. Chem. Inf. Model..

[23]  B. Grzybowski,et al.  Rapid and Accurate Prediction of pKa Values of C-H Acids Using Graph Convolutional Neural Networks. , 2019, Journal of the American Chemical Society.

[24]  Antony J. Williams,et al.  Open-source QSAR models for pKa prediction using multiple machine learning approaches , 2019, Journal of Cheminformatics.

[25]  Beth A. Caine,et al.  Experiment stands corrected: accurate prediction of the aqueous pKa values of sulfonamide drugs using equilibrium bond lengths , 2019, Chemical science.

[26]  Regina Barzilay,et al.  Analyzing Learned Molecular Representations for Property Prediction , 2019, J. Chem. Inf. Model..

[27]  Jacob D. Durrant,et al.  Dimorphite-DL: an open-source program for enumerating the ionization states of drug-like small molecules , 2019, Journal of Cheminformatics.

[28]  Bernard R. Brooks,et al.  An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in SAMPL6 challenge , 2018, Journal of Computer-Aided Molecular Design.

[29]  Xiao Wang,et al.  pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments , 2018, bioRxiv.

[30]  Stefan Grimme,et al.  High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge , 2018, Journal of Computer-Aided Molecular Design.

[31]  Bernard R. Brooks,et al.  Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge , 2018, Journal of Computer-Aided Molecular Design.

[32]  Bogdan I. Iorga,et al.  SAMPL6: calculation of macroscopic pKa values from ab initio quantum mechanical free energies , 2018, Journal of Computer-Aided Molecular Design.

[33]  Stefan M. Kast,et al.  The SAMPL6 challenge on predicting aqueous pKa values from EC-RISM theory , 2018, Journal of Computer-Aided Molecular Design.

[34]  Thomas Steinbrecher,et al.  Quantum chemical prediction for complex organic molecules , 2018 .

[35]  Caitlin C. Bannan,et al.  SAMPL6 challenge results from $$pK_a$$pKa predictions based on a general Gaussian process model , 2018, Journal of Computer-Aided Molecular Design.

[36]  Antony J. Williams,et al.  OPERA models for predicting physicochemical properties and environmental fate endpoints , 2018, Journal of Cheminformatics.

[37]  Mark A Watson,et al.  Multiconformation, Density Functional Theory-Based pKa Prediction in Application to Large, Flexible Organic Molecules with Diverse Functional Groups. , 2016, Journal of chemical theory and computation.

[38]  P. Seybold,et al.  Computational estimation of pKa values , 2015 .

[39]  Andreas H. Göller,et al.  Best of Both Worlds: Combining Pharma Data and State of the Art Modeling Technology To Improve in Silico pKa Prediction , 2015, J. Chem. Inf. Model..

[40]  Thomas Sander,et al.  DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis , 2015, J. Chem. Inf. Model..

[41]  Sanjay Joshua Swamidass,et al.  XenoSite: Accurately Predicting CYP-Mediated Sites of Metabolism with Neural Networks , 2013, J. Chem. Inf. Model..

[42]  Guido Sanguinetti,et al.  Multi-task learning for pKa prediction , 2012, Journal of Computer-Aided Molecular Design.

[43]  Shubin Liu,et al.  Modeling molecular acidity with electronic properties and Hammett constants for substituted benzoic acids. , 2011, The journal of physical chemistry. A.

[44]  I. Tetko,et al.  Predicting the pKa of Small Molecules , 2011 .

[45]  Igor V Tetko,et al.  Estimation of Acid Dissociation Constants Using Graph Kernels , 2010, Molecular informatics.

[46]  Loriano Storchi,et al.  In silico pKa Prediction and ADME Profiling , 2009, Chemistry & biodiversity.

[47]  L. Pedersen,et al.  Molecular acidity: A quantitative conceptual density functional theory description. , 2009, The Journal of chemical physics.

[48]  Paul L. A. Popelier,et al.  pKa Prediction from "Quantum Chemical Topology" Descriptors , 2009, J. Chem. Inf. Model..

[49]  Gordon M. Crippen,et al.  pKa Prediction of Monoprotic Small Molecules the SMARTS Way , 2008, J. Chem. Inf. Model..

[50]  Gisbert Schneider,et al.  Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity , 2007, J. Chem. Inf. Model..

[51]  Loriano Storchi,et al.  New and Original pKa Prediction Method Using Grid Molecular Interaction Fields , 2007, J. Chem. Inf. Model..

[52]  Peter Ertl,et al.  Estimation of pKa for Druglike Compounds Using Semiempirical and Information-Based Descriptors , 2007, J. Chem. Inf. Model..

[53]  R. Parthasarathi,et al.  pKa prediction using group philicity. , 2006, The journal of physical chemistry. A.

[54]  Andreas Klamt,et al.  First Principles Calculations of Aqueous pKa Values for Organic and Inorganic Acids Using COSMO-RS Reveal an Inconsistency in the Slope of the pKa Scale. , 2003, The journal of physical chemistry. A.

[55]  Robert C. Glen,et al.  Predicting pKa by Molecular Tree Structured Fingerprints and PLS , 2003, J. Chem. Inf. Comput. Sci..

[56]  Emanuela Gancia,et al.  Estimation of pKa Using Semiempirical Molecular Orbital Methods. Part 1: Application to Phenols and Carboxylic Acids. , 2002 .