Compositional Event Structure Semantics for the Internal pi -Calculus

We propose the first compositional event structure semantics for a very expressive p-calculus, generalising Winskel's event structures for CCS. The p-calculus we model is the pI-calculus with recursive definitions and summations. First we model the synchronous calculus, introducing a notion of dynamic renaming to the standard operators on event structures. Then we model the asynchronous calculus, for which a new additional operator, called rooting, is necessary for representing causality due to new name binding. The semantics are shown to be operationally adequate and sound with respect to bisimulation.

[1]  Michele Boreale,et al.  On the Expressiveness of Internal Mobility in Name-Passing Calculi , 1996, Theor. Comput. Sci..

[2]  Kohei Honda,et al.  Sequentiality and the π-Calculus , 2001 .

[3]  Pierre-Louis Curien,et al.  L-Nets, Strategies and Proof-Nets , 2005, CSL.

[4]  Pierre America,et al.  ECOOP'91 European Conference on Object-Oriented Programming , 1991, Lecture Notes in Computer Science.

[5]  Sam Lindley,et al.  Extensional Rewriting with Sums , 2007, TLCA.

[6]  Claudia Faggian,et al.  A Graph Abstract Machine Describing Event Structure Composition , 2007, Electron. Notes Theor. Comput. Sci..

[7]  Christel Baier,et al.  CONCUR 2006 - Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings , 2006, CONCUR.

[8]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and asynchronous $pi$-calculi , 2003, Mathematical Structures in Computer Science.

[9]  Glynn Winskel Relations in concurrency , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[10]  Davide Sangiorgi,et al.  A fully abstract semantics for causality in the $\pi$-calculus , 1998, Acta Informatica.

[11]  Davide Sangiorgi,et al.  On asynchrony in name-passing calculi , 1998, Mathematical Structures in Computer Science.

[12]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[13]  Glynn Winskel Event Structure Semantics for CCS and Related Languages , 2002 .

[14]  Rocco De Nicola,et al.  On the consistency of 'truly concurrent' operational and denotational semantics , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[15]  Davide Sangiorgi pi-Calculus, Internal Mobility, and Agent-Passing Calculi , 1996, Theor. Comput. Sci..

[16]  Insup Lee,et al.  CONCUR '95: Concurrency Theory , 1995, Lecture Notes in Computer Science.

[17]  D. Sangiorgi - calculus , internal mobility , and agent-passing calculi , 1995 .

[18]  Grzegorz Rozenberg,et al.  Advances in Petri Nets 1985 , 1985, Lecture Notes in Computer Science.

[19]  Peter Sewell,et al.  Models for name-passing processes: interleaving and causal , 2004, Inf. Comput..

[20]  Glynn Winskel Name generation and linearity , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[21]  Corrado Priami,et al.  Non-Interleaving Semantics for Mobile Processes , 1999, Theor. Comput. Sci..

[22]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[23]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[24]  Glynn Winskel,et al.  Event Structure Semantics for CCS and Related Languages , 1982, ICALP.

[25]  Claudia Faggian,et al.  Ludics is a Model for the Finitary Linear Pi-Calculus , 2007, TLCA.

[26]  Radha Jagadeesan,et al.  Causality and True Concurrency: A Data-flow Analysis of the Pi-Calculus (Extended Abstract) , 1995, AMAST.

[27]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[28]  Roberto Gorrieri,et al.  A Petri Net Semantics for pi-Calculus , 1995, CONCUR.

[29]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[30]  Roberto Bruni,et al.  Event Structure Semantics for Nominal Calculi , 2006, CONCUR.

[31]  Daniele Varacca,et al.  Typed Event Structures and the p-Calculus , 2006 .

[32]  Joost Engelfriet,et al.  A Multiset Semantics for the pi-Calculus with Replication , 1993, Theor. Comput. Sci..

[33]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .