On the Joint Distribution of Descents and Signs of Permutations

We study the joint distribution of descents and sign for elements of the symmetric group and the hyperoctahedral group (Coxeter groups of types $A$ and $B$). For both groups, this has an application to riffle shuffling: for large decks of cards the sign is close to random after a single shuffle. In both groups, we derive generating functions for the Eulerian distribution refined according to sign, and use them to give two proofs of central limit theorems for positive and negative Eulerian numbers.

[1]  Victor Reiner,et al.  Signed Permutation Statistics and Cycle Type , 1993, Eur. J. Comb..

[2]  Jim Pitman,et al.  Riffle shuffles, cycles, and descents , 1995, Comb..

[3]  François Bergeron,et al.  Orthogonal idempotents in the descent algebra of Bn and applications , 1992 .

[4]  J.-L. Loday,et al.  Opérations sur l'homologie cyclique des algèbres commutatives , 1989 .

[5]  Victor Reiner Descents and one-dimensional characters for classical Weyl groups , 1995, Discret. Math..

[6]  Lin Tan On the distinguished coset representatives of the parabolic subgroups in finite coxeter groups , 1994 .

[7]  Jason Fulman Applications of the Brauer Complex: Card Shuffling, Permutation Statistics, and Dynamical Systems , 2001 .

[8]  Thomas Kahle,et al.  Counting inversions and descents of random elements in finite Coxeter groups , 2018, Math. Comput..

[9]  Sami H. Assaf,et al.  A rule of thumb for riffle shuffling , 2009, 0908.3462.

[10]  Hiranya Kishore Dey,et al.  Gamma Positivity of the Excedance-Based Eulerian Polynomial in Positive Elements of Classical Weyl Groups , 2018 .

[11]  Persi Diaconis,et al.  MATHEMATICAL DEVELOPMENTS FROM THE ANALYSIS OP RIFFLE SHUFFLING , 2003 .

[12]  Jacques Désarménien,et al.  The signed Eulerian numbers , 1992, Discret. Math..

[13]  Jim Pitman,et al.  Probabilistic Bounds on the Coefficients of Polynomials with Only Real Zeros , 1997, J. Comb. Theory, Ser. A.

[14]  Carla D. Savage,et al.  The s-eulerian polynomials have only real roots , 2012, 1208.3831.

[15]  Gene B. Kim,et al.  A central limit theorem for descents and major indices in fixed conjugacy classes of Sn , 2021, Adv. Appl. Math..

[16]  P. M. Neumann,et al.  A Generating Function Approach To The Enumeration Of Matrices In Classical Groups Over Finite Fields , 2005 .

[17]  P. Diaconis,et al.  Analysis of casino shelf shuffling machines , 2011, 1107.2961.

[18]  Hsien-Kuei Hwang,et al.  An asymptotic distribution theory for Eulerian recurrences with applications , 2018, Adv. Appl. Math..

[19]  S. Tanimoto A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP , 2006 .

[20]  P. Diaconis,et al.  Trailing the Dovetail Shuffle to its Lair , 1992 .

[21]  Francesco Brenti,et al.  q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..

[22]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[23]  Michelle L. Wachs,et al.  An involution for signed Eulerian numbers , 1992, Discret. Math..

[24]  Hong Kong Asymptotic probability distributions of some permutation statistics for the wreath product Cr ! , 2012 .

[25]  Gene B. Kim,et al.  A central limit theorem for descents and major indices in fixed conjugacy classes of $S_n$ , 2018, 1811.04578.

[26]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[27]  D. M. Clark Theory of Groups , 2012 .

[28]  Jason E. Fulman The Distribution of Descents in Fixed Conjugacy Classes of the Symmetric Groups , 1998, J. Comb. Theory, Ser. A.

[29]  P. Brändén Unimodality, log-concavity, real-rootedness and beyond , 2015 .

[30]  Persi Diaconis,et al.  Hopf algebras and Markov chains: two examples and a theory , 2012, Journal of Algebraic Combinatorics.

[31]  Hiranya Kishore Dey,et al.  Gamma Positivity of the Excedance-Based Eulerian Polynomial in Positive Elements of Classical Weyl Groups , 2018, Annals of Combinatorics.