Effective condition numbers and small sample statistical condition estimation for the generalized Sylvester equation

In this paper, we investigate the effective condition numbers for the generalized Sylvester equation (AX − YB, DX − YE) = (C, F), where A, D ∈ ℝm×m, B, E ∈ ℝn×n and C, F ∈ ℝm×n. We apply the small sample statistical method for the fast condition estimation of the generalized Sylvester equation, which requires O(m2n + mn2) flops, comparing with O(m3 + n3) flops for the generalized Schur and generalized Hessenberg-Schur methods for solving the generalized Sylvester equation. Numerical examples illustrate the sharpness of our perturbation bounds.

[1]  P. Hansen,et al.  The effective condition number applied to error analysis of certain boundary collocation methods , 1994 .

[2]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[3]  T. Chan,et al.  Effectively Well-Conditioned Linear Systems , 1988 .

[4]  Zi-Cai Li,et al.  Effective condition number for numerical partial differential equations , 2008, Numer. Linear Algebra Appl..

[5]  Nicholas J. Higham,et al.  Perturbation Theory And Backward Error For , 1993 .

[6]  C.-S. Chien,et al.  Effective condition number for finite difference method , 2007 .

[7]  Jianlin Xia,et al.  Applications of statistical condition estimation to the solution of linear systems , 2008, Numer. Linear Algebra Appl..

[8]  Alan J. Laub,et al.  Small-Sample Statistical Condition Estimates for General Matrix Functions , 1994, SIAM J. Sci. Comput..

[9]  Karabi Datta,et al.  The matrix equation XA − BX = R and its applications , 1988 .

[10]  Enrique S. Quintana-Ortí,et al.  The Generalized Newton Iteration forthe Matrix Sign Function , 2002, SIAM J. Sci. Comput..

[11]  Bo Kågström,et al.  A Perturbation Analysis of the Generalized Sylvester Equation $( AR - LB,DR - LE ) = ( C,F )$ , 1994, SIAM J. Matrix Anal. Appl..

[12]  Alan J. Laub,et al.  Residual bounds for discrete-time Lyapunov equations , 1995, IEEE Trans. Autom. Control..

[13]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[14]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[15]  A. Laub,et al.  Statistical Condition Estimation for Linear Least Squares , 1998, SIAM J. Matrix Anal. Appl..

[16]  J. Rice A Theory of Condition , 1966 .

[17]  R. Byers A LINPACK-style condition estimator for the equation AX-XB^{T} = C , 1984 .

[18]  B. Kågström,et al.  Generalized Schur methods with condition estimators for solving the generalized Sylvester equation , 1989 .

[19]  Enrique S. Quintana-Ortí,et al.  Spectral division methods for block generalized Schur decompositions , 2004, Math. Comput..

[20]  Nicholas J. Higham,et al.  Perturbation theory and backward error forAX−XB=C , 1993 .

[21]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[22]  Suzanne Lesecq,et al.  On the Local Sensitivity of the Lyapunov Equations , 2000, NAA.

[23]  James Demmel,et al.  Computing Stable Eigendecompositions of Matrix Pencils , 2015 .

[24]  Linda R. Petzold,et al.  An error estimate for matrix equations , 2004 .

[25]  J. Hearon,et al.  Nonsingular solutions of TA−BT=C , 1977 .

[26]  Hua Xiang,et al.  Mixed, componentwise condition numbers and small sample statistical condition estimation of Sylvester equations , 2012, Numer. Linear Algebra Appl..

[27]  John R. Rice Matrix Computations and Mathematical Software , 1983 .

[28]  Yimin Wei,et al.  Effective condition number and its applications , 2010, Computing.

[29]  Shufang Xu,et al.  Accurate solutions of M-matrix Sylvester equations , 2012, Numerische Mathematik.

[30]  Alan J. Laub,et al.  Sensitivity of the stable discrete-time Lyapunov equation , 1990 .

[31]  Jianlin Xia,et al.  Statistical Condition Estimation for the Roots of Polynomials , 2008, SIAM J. Sci. Comput..

[32]  V. Mehrmann,et al.  Perturbation theory for matrix equations , 2003, IEEE Transactions on Automatic Control.

[33]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[34]  Yimin Wei,et al.  Condition Numbers of the Generalized Sylvester Equation , 2007, IEEE Transactions on Automatic Control.

[35]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[36]  Gene H. Golub,et al.  Matrix computations , 1983 .

[37]  Jianlin Xia,et al.  Fast Condition Estimation for a Class of Structured Eigenvalue Problems , 2008, SIAM J. Matrix Anal. Appl..

[38]  F. R. Gantmakher The Theory of Matrices , 1984 .

[39]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[40]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[41]  P. Lancaster Explicit Solutions of Linear Matrix Equations , 1970 .