Production of nanoparticles using organisms

Recent developments in the biosynthesis of nanomaterials have demonstrated the important role of biological systems and microorganisms in nanoscience and nanotechnology. These organisms show a unique potential in environmentally friendly production and accumulation of nanoparticles with different shapes and sizes. Therefore, researchers in the field of nanoparticle synthesis are focusing their attention to biological systems. In order to obtain different applied chemical compositions, controlled monodispersity, desired morphologies (e.g., amorphous, spherical, needles, crystalline, triangular, and hexagonal), and interested particle size, they have investigated the biological mechanism and enzymatic process of nanoparticle production. In this review, most of these organisms used in nanoparticle synthesis are shown.

[1]  R. Puddephatt The chemistry of gold , 1978 .

[2]  R. Zierenberg,et al.  Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge , 1990 .

[3]  D. Winge,et al.  Characterization of peptide-coated cadmium-sulfide crystallites , 1990 .

[4]  Absar Ahmad,et al.  BIOSYNTHESIS OF METAL NANOPARTICLES USING FUNGI AND ACTINOMYCETE , 2003 .

[5]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[6]  Yuri A. Gorby,et al.  Microbial Reduction of CobaltIIIEDTA- in the Presence and Absence of Manganese(IV) Oxide , 1998 .

[7]  N. Chakraborty,et al.  Diatom: A potential bio-accumulator of gold , 2006 .

[8]  I. R. Harris,et al.  Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307 , 2002, Biotechnology and bioengineering.

[9]  S. Basavaraja,et al.  Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. , 2009, Colloids and surfaces. B, Biointerfaces.

[10]  Edward R. Landa,et al.  Microbial reduction of uranium , 1991, Nature.

[11]  David S. Goodsell,et al.  Bionanotechnology: Lessons from Nature , 2004 .

[12]  E. Wang,et al.  Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin , 2007 .

[13]  David S. Goodsell The Quest for Nanotechnology , 2004 .

[14]  Hojatollah Vali,et al.  FORMATION OF SINGLE-DOMAIN MAGNETITE BY A THERMOPHILIC BACTERIUM , 1998 .

[15]  Andrew T. Harris,et al.  On the formation and extent of uptake of silver nanoparticles by live plants , 2008 .

[16]  P. Dunnill,et al.  Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe. , 1996, Journal of Biotechnology.

[17]  E. Torres,et al.  Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin , 1997 .

[18]  A Paul Alivisatos,et al.  A single-electron transistor made from a cadmium selenide nanocrystal , 1997, Nature.

[19]  Robert J. Lauf,et al.  Microbial synthesis and the characterization of metal-substituted magnetites , 2001 .

[20]  S. W. Li,et al.  Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate , 1999, Applied and Environmental Microbiology.

[21]  D. Denning,et al.  Aspergillus flavus: human pathogen, allergen and mycotoxin producer. , 2007, Microbiology.

[22]  Sudesh Kumar Yadav,et al.  Biosynthesis of nanoparticles: technological concepts and future applications , 2008 .

[23]  R. Mehra,et al.  Metal ion resistance in fungi: Molecular mechanisms and their regulated expression , 1991, Journal of cellular biochemistry.

[24]  Sudhakar R. Sainkar,et al.  BIOREDUCTION OF AUCL4− IONS BY THE FUNGUS, VERTICILLIUM SP. AND SURFACE TRAPPING OF THE GOLD NANOPARTICLES FORMED , 2001 .

[25]  Satyajyoti Senapati,et al.  Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. , 2005, Small.

[26]  Marcel Dijkstra,et al.  MEMS based hair flow-sensors as model systems for acoustic perception studies , 2006, Nanotechnology.

[27]  M. Wu,et al.  Cadmium sequestration in Chlamydomonas reinhardtii , 2001 .

[28]  Vipul Bansal,et al.  Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. , 2006, Journal of the American Chemical Society.

[29]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[30]  T. Hohl,et al.  Aspergillus fumigatus: Principles of Pathogenesis and Host Defense , 2007, Eukaryotic Cell.

[31]  Y. Wang Nonlinear optical properties of nanometer-sized semiconductor clusters , 1991 .

[32]  C. Granqvist,et al.  Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. , 2001, Trends in biotechnology.

[33]  Jose R. Peralta-Videa,et al.  Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants , 2002 .

[34]  M. Zenk Heavy metal detoxification in higher plants--a review. , 1996, Gene.

[35]  K. O. Stetter,et al.  Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C , 1987, Archives of Microbiology.

[36]  Tomoya Uruga,et al.  Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. , 2007, Journal of biotechnology.

[37]  D. Lovley,et al.  Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese , 1988, Applied and environmental microbiology.

[38]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[39]  R. McPherson,et al.  Accumulation of elemental gold on the alga Chlorella vulgaris , 1986 .

[40]  Atsushi Arakaki,et al.  Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. , 2007, Biomaterials.

[41]  Antony K. Chen,et al.  Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging , 2006, Annals of Biomedical Engineering.

[42]  A. K. Jha,et al.  A green low-cost biosynthesis of Sb2O3 nanoparticles , 2009 .

[43]  T. Pradeep,et al.  Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains , 2002 .

[44]  J. Gardea-Torresdey,et al.  Characterization of trace level Au(III) binding to alfalfa biomass (Medicago sativa) by GFAAS , 2002 .

[45]  D. Nicolau,et al.  Shewanella fidelis sp. nov., isolated from sediments and sea water. , 2003, International journal of systematic and evolutionary microbiology.

[46]  D. Schüler Formation of magnetosomes in magnetotactic bacteria. , 1999, Journal of molecular microbiology and biotechnology.

[47]  P. Moroz,et al.  Magnetically mediated hyperthermia: current status and future directions , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[48]  Absar Ahmad,et al.  Fungus-mediated biosynthesis of silica and titania particles , 2005 .

[49]  K. Raper,et al.  The genus Aspergillus , 1966 .

[50]  H. B. Liu,et al.  Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles , 2006 .

[51]  Hong-Juan Bai,et al.  Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides , 2009 .

[52]  J. Lloyd,et al.  A Novel PhosphorImager-Based Technique for Monitoring the Microbial Reduction of Technetium , 1996, Applied and environmental microbiology.

[53]  I. Maliszewska,et al.  Biological synthesis of silver nanoparticles , 2009 .

[54]  Absar Ahmad,et al.  Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract , 2006, Biotechnology progress.

[55]  W. Rogers,et al.  Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. , 2005, Atherosclerosis.

[56]  Satyajyoti Senapati,et al.  FUNGUS MEDIATED SYNTHESIS OF SILVER NANOPARTICLES: A NOVEL BIOLOGICAL APPROACH , 2004 .

[57]  R. Mehra,et al.  Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. , 1994, Biochemical and biophysical research communications.

[58]  L. Love,et al.  A magnetocaloric pump for microfluidic applications , 2004, IEEE Transactions on NanoBioscience.

[59]  Absar Ahmad,et al.  Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. , 2004, Journal of colloid and interface science.

[60]  Jizhong Zhou,et al.  Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4 , 2006, Applied and Environmental Microbiology.

[61]  D. Schüler,et al.  Environmental parameters affect the physical properties of fast-growing magnetosomes , 2008 .

[62]  N. Saifuddin,et al.  Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation , 2009 .

[63]  G. Martin The Genus Aspergillus. , 1946, Science.

[64]  Jianzhang Zhou,et al.  Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route , 2009 .

[65]  Dirk Schüler,et al.  Genetics and cell biology of magnetosome formation in magnetotactic bacteria. , 2008, FEMS microbiology reviews.

[66]  M. Camacho-López,et al.  Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract , 2008 .

[67]  M. Sarikaya,et al.  A genetic analysis of crystal growth. , 2000, Journal of molecular biology.

[68]  Shiv Shankar,et al.  Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings , 2005 .

[69]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[70]  Rajinder K. Gupta,et al.  Nanotechnology and Potential of Microorganisms , 2005, Critical reviews in biotechnology.

[71]  B. T. Nguyen,et al.  Nitrocellulose-stabilized silver nanoparticles as low conversion temperature precursors useful for inkjet printed electronics , 2007 .

[72]  J. Brierley,et al.  Biological Methods to Remove Selected Inorganic Pollutants from Uranium Mine Wastewater , 1980 .

[73]  J. Gardea-Torresdey,et al.  Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (oat) biomass. , 2000, Journal of hazardous materials.

[74]  Jorge L Gardea-Torresdey,et al.  Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. , 2007, Environmental science & technology.

[75]  M. Sastry,et al.  Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing , 2005 .

[76]  Yi-Tin Wang Microbial Reduction of Chromate , 2000 .

[77]  G. W. Bailey,et al.  Bacterial sorption of heavy metals , 1989, Applied and environmental microbiology.

[78]  S. Gurunathan,et al.  Biosynthesis of silver nanocrystals by Bacillus licheniformis. , 2008, Colloids and surfaces. B, Biointerfaces.

[79]  Shuming Nie,et al.  Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging , 2006, Annals of Biomedical Engineering.

[80]  R. Pal,et al.  Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation – a novel phenomenon , 2009, Journal of Applied Phycology.

[81]  Bruce Ravel,et al.  Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. , 2006, Environmental science & technology.

[82]  Jiale Huang,et al.  Continuous-Flow Biosynthesis of Silver Nanoparticles by Lixivium of Sundried Cinnamomum camphora Leaf in Tubular Microreactors , 2008 .

[83]  K. Deplanche,et al.  Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans , 2008, Biotechnology and bioengineering.

[84]  H. Weller Transistors and Light Emitters from Single Nanoclusters. , 1998, Angewandte Chemie.

[85]  C. Whiteley,et al.  Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology , 2006, Nanotechnology.

[86]  K. Narayanan,et al.  Coriander leaf mediated biosynthesis of gold nanoparticles , 2008 .

[87]  K. Kalishwaralal,et al.  Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis , 2008 .

[88]  D. Nicolau,et al.  Shewanella waksmanii sp. nov., isolated from a sipuncula (Phascolosoma japonicum). , 2003, International journal of systematic and evolutionary microbiology.

[89]  H. Fenniri,et al.  Chemically stable silver nanoparticle-crosslinked polymer microspheres. , 2008, Journal of colloid and interface science.

[90]  Ajay Misra,et al.  GREEN SYNTHESIS OF SILVER NANOPARTICLES USING LATEX OF JATROPHA CURCAS , 2009 .

[91]  Norman Herron,et al.  Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties , 1991 .

[92]  N. Kim,et al.  Treatment Failure Due to Emergence of Resistance to Carbapenem during Therapy for Shewanella algae Bacteremia , 2006, Journal of Clinical Microbiology.

[93]  A. Ingle,et al.  Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and its Activity Against Some Human Pathogenic Bacteria , 2008 .

[94]  C. Whiteley,et al.  Bioreduction of Pt (IV) from aqueous solution using sulphate-reducing bacteria , 2007, Applied Microbiology and Biotechnology.

[95]  Benjamin Gilbert,et al.  Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles , 2007, Science.

[96]  J. Peralta-Videa,et al.  Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology , 2004 .

[97]  R. Bachofen,et al.  Reduction of Selenite and Detoxification of Elemental Selenium by the Phototrophic BacteriumRhodospirillum rubrum , 1999, Applied and Environmental Microbiology.

[98]  B. Narasimhan,et al.  Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. , 2007, ACS nano.

[99]  M. Jansson,et al.  PHOSPHOROUS RELEASE FROM LAKE SEDIMENTS , 1982 .

[100]  K. Kathiresan,et al.  Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. , 2009, Colloids and surfaces. B, Biointerfaces.

[101]  G. Hudler Magical Mushrooms, Mischievous Molds , 1998 .

[102]  R. P. Nachane,et al.  Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus , 2007 .

[103]  Ahmad Reza Shahverdi,et al.  Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach , 2007 .

[104]  Simon Biggs,et al.  Photoelectrochemical properties of ‘Q-state’ CdS particles in arachidic acid Langmuir–Blodgett films , 1995 .

[105]  R. Blakemore,et al.  A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire , 1992, Applied and environmental microbiology.

[106]  S. Macnaughton,et al.  Developments in terrestrial bacterial remediation of metals. , 1999, Current opinion in biotechnology.

[107]  D. Lovley,et al.  Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism , 1994, Applied and environmental microbiology.

[108]  Lovley DerekR. Organic matter mineralization with the reduction of ferric iron: A review , 1987 .

[109]  R. Sanghi,et al.  Biomimetic synthesis and characterisation of protein capped silver nanoparticles. , 2009, Bioresource technology.

[110]  R. Kumar,et al.  Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. , 2003 .

[111]  Absar Ahmad,et al.  Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles , 2003, Biotechnology progress.

[112]  S. Basavaraja,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum , 2008 .

[113]  Kelly P. Nevin,et al.  Reductive Precipitation of Gold by Dissimilatory Fe(III)-Reducing Bacteria andArchaea , 2001, Applied and Environmental Microbiology.

[114]  G. Amin,et al.  Screening of Medicinal Plant Methanol Extracts for the Synthesis of Gold Nanoparticles by Their Reducing Potential , 2008 .

[115]  Jiale Huang,et al.  Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf , 2007 .

[116]  D. Schüler,et al.  The Major Magnetosome Proteins MamGFDC Are Not Essential for Magnetite Biomineralization in Magnetospirillum gryphiswaldense but Regulate the Size of Magnetosome Crystals , 2007, Journal of bacteriology.

[117]  G. Stubbs,et al.  Inorganic–Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus , 1999 .

[118]  H. Whiteley,et al.  REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I , 1962, Journal of bacteriology.

[119]  D. P. Cunningham,et al.  Precipitation of cadmium by Clostridium thermoaceticum , 1993, Applied and environmental microbiology.

[120]  V. Kumar,et al.  A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. , 2007, Colloids and surfaces. B, Biointerfaces.

[121]  Raja Mazumder,et al.  Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium , 1995 .

[122]  Mariekie Gericke,et al.  Microbial production of gold nanoparticles , 2006 .

[123]  D. Lovley,et al.  Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens , 1989, Applied and environmental microbiology.

[124]  Absar Ahmad,et al.  Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. , 2005, Journal of nanoscience and nanotechnology.

[125]  H. Oikawa,et al.  Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. , 2003, International journal of systematic and evolutionary microbiology.

[126]  Absar Ahmad,et al.  Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[127]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[128]  Gioacchino Scarano,et al.  Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd , 2003 .

[129]  Michael R. Hoffmann,et al.  Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers , 1992 .

[130]  J. Jansen,et al.  Ferrofluid field induced flow for microfluidic applications , 2005, IEEE/ASME Transactions on Mechatronics.

[131]  Tetsuya Osaka,et al.  THE STUDY OF ANTIMICROBIAL ACTIVITY AND PRESERVATIVE EFFECTS OF NANOSILVER INGREDIENT , 2005 .

[132]  R. Reese,et al.  Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. , 1988, The Journal of biological chemistry.

[133]  V. A. Solé,et al.  Technetium reduction and precipitation by sulfate‐reducing bacteria , 1998 .

[134]  J. Trevors,et al.  Metal-microbe interactions: contemporary approaches. , 1997, Advances in microbial physiology.

[135]  G Scheel,et al.  Heavy metal tolerance in the fission yeast requires an ATP‐binding cassette‐type vacuolar membrane transporter. , 1992, The EMBO journal.

[136]  S. Kale,et al.  Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum , 2008, Nanotechnology.

[137]  R. Mehra,et al.  Studies on the gamma-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. , 1988, The Journal of biological chemistry.

[138]  W. Verstraete,et al.  Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. , 2005, Environmental microbiology.

[139]  D. A. Russell,et al.  Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes , 1995, Archives of Microbiology.

[140]  J. Banfield,et al.  Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. , 2000, Science.

[141]  T J Beveridge,et al.  Participation of a cyanobacterial S layer in fine-grain mineral formation , 1992, Journal of bacteriology.

[142]  T. McMeekin,et al.  Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. , 1997, International journal of systematic bacteriology.

[143]  B. Narasimhan,et al.  Protein‐Mediated Synthesis of Uniform Superparamagnetic Magnetite Nanocrystals , 2007 .

[144]  Vladimir P Zharov,et al.  Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[145]  Susan C. Cook,et al.  Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats , 1976 .

[146]  Richard G. Haverkamp,et al.  Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo , 2007 .

[147]  D. Lovley,et al.  Fe(III) and S0 reduction by Pelobacter carbinolicus , 1995, Applied and environmental microbiology.

[148]  W. Bae,et al.  Properties of glutathione- and phytochelatin-capped CdS bionanocrystallites , 1998 .

[149]  S. Senapati Biosynthesis and immobilization of nanoparticles and their applications , 2005 .

[150]  P. Moroz,et al.  Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model , 2002, Journal of surgical oncology.

[151]  G. Southam,et al.  The in vitro formation of placer gold by bacteria , 1994 .

[152]  E. Roden,et al.  Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans , 1993, Applied and environmental microbiology.

[153]  Li Zhang,et al.  Green synthesis of silver nanoparticles using Capsicum annuum L. extract , 2007 .

[154]  I. R. Harris,et al.  Bioaccumulation of palladium by Desulfovibrio desulfuricans , 2002 .

[155]  M. Mahmoud,et al.  Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[156]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[157]  F. Crundwell,et al.  Growth of Thiobacillus ferrooxidans: a Novel Experimental Design for Batch Growth and Bacterial Leaching Studies , 1997, Applied and environmental microbiology.

[158]  J. F. Hamilton,et al.  Catalysis by Small Metal Clusters , 1979, Science.

[159]  Heinrich Klefenz,et al.  Nanobiotechnology: From Molecules to Systems , 2004 .

[160]  D. Lovley,et al.  Reduction of Fe(III), Mn(IV), and Toxic Metals at 100°C by Pyrobaculum islandicum , 2000, Applied and Environmental Microbiology.

[161]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[162]  Wen He,et al.  The biomimetic synthesis of zinc phosphate nanoparticles , 2009 .

[163]  J. Lloyd,et al.  Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. , 1999, Biotechnology and bioengineering.

[164]  A. M. Purdon,et al.  Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria Using Microelectromagnets Arrays , 2004 .

[165]  Toshiyuki Nomura,et al.  Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae , 2006 .

[166]  S. W. Li,et al.  Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) byDeinococcus radiodurans R1 , 2000, Applied and Environmental Microbiology.

[167]  H. Nakazawa,et al.  Formation of magnetite by bacteria and its application , 2008, Journal of The Royal Society Interface.

[168]  Kumar,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum , 2003 .

[169]  K. C. Bhainsa,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. , 2006, Colloids and surfaces. B, Biointerfaces.

[170]  A. Belcher,et al.  Bacterial biosynthesis of cadmium sulfide nanocrystals. , 2004, Chemistry & biology.

[171]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[172]  J. Trevors,et al.  Germanium and silver resistance, accumulation, and toxicity in microorganisms. , 1992, Plasmid.

[173]  J. Peralta-Videa,et al.  Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles , 2003 .

[174]  I. Maliszewska,et al.  Synthesis of silver nanoparticles using microorganisms , 2008 .

[175]  Nikolai N. Ledentsov,et al.  Ordered arrays of quantum dots: Formation, electronic spectra, relaxation phenomena, lasing , 1996 .

[176]  G. Payne,et al.  Unlocking the Secrets Behind Secondary Metabolism: A Review of Aspergillus flavus from Pathogenicity to Functional Genomics , 2003 .

[177]  R. Kumar,et al.  Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, Trichothecium sp. , 2005 .

[178]  K. Fahmy,et al.  Metal binding by bacteria from uranium mining waste piles and its technological applications. , 2006, Biotechnology advances.

[179]  Jizhong Zhou,et al.  Thermophilic Fe(III)-Reducing Bacteria from the Deep Subsurface: The Evolutionary Implications , 1997 .

[180]  M. Casanove,et al.  Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies , 1998 .

[181]  Lynne E. Macaskie,et al.  Enzymatic Recovery of Elemental Palladium by Using Sulfate-Reducing Bacteria , 1998, Applied and Environmental Microbiology.

[182]  Wei Jiang,et al.  High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air , 2008, Applied Microbiology and Biotechnology.

[183]  Toshiyuki Nomura,et al.  Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae , 2007 .

[184]  J. Frank,et al.  Magnetoferritin. Biomineralization as a novel molecular approach in the design of iron-oxide-based magnetic resonance contrast agents. , 1994, Investigative radiology.

[185]  J. Lloyd,et al.  Metal reduction by sulphate-reducing bacteria: Physiological diversity and metal specificity , 2001 .

[186]  N. Rajendiran,et al.  Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. , 2009, Colloids and surfaces. B, Biointerfaces.

[187]  L. Love,et al.  Magnetic properties of biosynthesized magnetite nanoparticles , 2005, IEEE Transactions on Magnetics.

[188]  F. Meldrum,et al.  The Colloid Chemical Approach to Nanostructured Materials , 1995 .

[189]  Ganesan Singaravelu,et al.  Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler , 2008, Journal of Materials Science.

[190]  T. D. Brock,et al.  Oxidation of Elemental Sulfur by Sulfolobus acidocaldarius , 1973, Journal of bacteriology.

[191]  M. Young,et al.  Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis , 2002 .

[192]  D. Nicolau,et al.  Shewanella japonica sp. nov. , 2001, International journal of systematic and evolutionary microbiology.

[193]  Sudhakar R. Sainkar,et al.  Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis , 2001 .

[194]  J. Hawari,et al.  Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. , 2005, International journal of systematic and evolutionary microbiology.

[195]  R. P. Nachane,et al.  Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[196]  D. Ow,et al.  Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe , 1992, Molecular and cellular biology.

[197]  W. E. Rauser Phytochelatins and Related Peptides (Structure, Biosynthesis, and Function) , 1995, Plant physiology.

[198]  T. Matsunaga,et al.  Magnetic cell separation using nano‐sized bacterial magnetic particles with reconstructed magnetosome membrane , 2008, Biotechnology and bioengineering.

[199]  E. Morelli,et al.  Speciation of cadmium–γ-glutamyl peptides complexes in cells of the marine microalga Phaeodactylum tricornutum , 2002 .

[200]  Sulabha K. Kulkarni,et al.  Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3 , 2007, Biotechnology Letters.

[201]  D. Taylor,et al.  Bacterial tellurite resistance. , 1999, Trends in microbiology.

[202]  Characterization of peptide coated cadmium: Sulfide crystallites , 1989 .

[203]  Yonghong He,et al.  Bacillus subtilis assisted assembly of gold nanoparticles into long conductive nodous ribbons. , 2006, The journal of physical chemistry. B.

[204]  D. Lovley,et al.  Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors , 1995, Applied and environmental microbiology.

[205]  Mariekie Gericke,et al.  BIOLOGICAL SYNTHESIS OF METAL NANOPARTICLES , 2006 .

[206]  H. Aiking,et al.  Adaptation to Cadmium by Klebsiella aerogenes Growing in Continuous Culture Proceeds Mainly via Formation of Cadmium Sulfide , 1982, Applied and Environmental Microbiology.

[207]  W. Ernst,et al.  Poly(γ‐glutamylcysteinyl)glycines or phytochelatins and their role in cadmium tolerance of Silene vulgaris , 1990 .

[208]  R. B. Grubbs Roles of Polymer Ligands in Nanoparticle Stabilization , 2007 .

[209]  R. V. Omkumar,et al.  Growth of gold nanoparticles in human cells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[210]  W. E. Smith,et al.  Orientation of Cytochrome c Adsorbed on a Citrate-Reduced Silver Colloid Surface , 1996 .

[211]  Oswaldo Luiz Alves,et al.  Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment , 2007 .

[212]  C. Granqvist,et al.  Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin‐Film Coatings , 2000 .

[213]  S. Kotthaus,et al.  Study of isotropically conductive bondings filled with aggregates of nano-sited Ag-particles , 1997 .

[214]  J. L. Rius,et al.  Electron microscopy characterization of biosynthesized iron oxide nanoparticles , 2008 .

[215]  Derek R. Lovley,et al.  Reduction of Chromate by Desulfovibrio vulgaris and Its c3 Cytochrome , 1994, Applied and environmental microbiology.

[216]  R. Delgado,et al.  Biomineralization of Carbonates by Marinococcus albus and Marinococcus halophilus Isolated from the Salar de Atacama (Chile) , 1999, Current Microbiology.

[217]  G. Southam,et al.  The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro , 1996 .

[218]  J. Gardea-Torresdey,et al.  Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions , 1999 .

[219]  Zhong-Qun Tian,et al.  Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. , 2004, Annual review of physical chemistry.

[220]  J. Lloyd,et al.  Reduction of Technetium by Desulfovibrio desulfuricans: Biocatalyst Characterization and Use in a Flowthrough Bioreactor , 1999, Applied and Environmental Microbiology.

[221]  P. Lindahl,et al.  METHYLATION OF CARBON MONOXIDE DEHYDROGENASE FROM CLOSTRIDIUM THERMOACETICUM AND MECHANISM OF ACETYL COENZYME A SYNTHESIS , 1997 .

[222]  P. James,et al.  ADSORPTION OF RADIOACTIVE METALS BY STRONGLY MAGNETIC IRON SULFIDE NANOPARTICLES PRODUCED BY SULFATE-REDUCING BACTERIA , 2001 .

[223]  R. Finke,et al.  A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylpyrrolidone), as well as four other polymeric protectants. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[224]  Shiv Shankar,et al.  Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes , 2003 .

[225]  E. Roden,et al.  Enzymatic iron and uranium reduction by sulfate-reducing bacteria , 1993 .

[226]  Masanori Sugisaka,et al.  From molecular biology to nanotechnology and nanomedicine. , 2002, Bio Systems.

[227]  Derek R. Lovley,et al.  Enzymic uranium precipitation , 1992 .

[228]  T. Matsunaga,et al.  Biomagnetic nanoparticle formation and application , 1998 .

[229]  R. P. Nachane,et al.  Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. , 2006, Colloids and surfaces. B, Biointerfaces.

[230]  E Olsson,et al.  Silver-based crystalline nanoparticles, microbially fabricated. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[231]  D. Schüler,et al.  A Large Gene Cluster Encoding Several Magnetosome Proteins Is Conserved in Different Species of Magnetotactic Bacteria , 2001, Applied and Environmental Microbiology.

[232]  F. Jiménez,et al.  Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. , 2002, International journal of systematic and evolutionary microbiology.

[233]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[234]  D C White,et al.  Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. , 1999, International journal of systematic bacteriology.

[235]  Sudhir Kapoor,et al.  Preparation, Characterization, and Surface Modification of Silver Particles , 1998 .

[236]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[237]  C. Mirkin,et al.  Living templates for the hierarchical assembly of gold nanoparticles. , 2003, Angewandte Chemie.

[238]  N. Çíftçíoglu,et al.  Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[239]  Xiaoping Hu,et al.  MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter , 2008, Magnetic resonance in medicine.

[240]  He Ning,et al.  Rapid Preparation Process of Silver Nanoparticles by Bioreduction and Their Characterizations , 2006 .

[241]  I. Ardelean,et al.  Controlled biomineralization of magnetite (Fe3O4) by Magnetospirillum gryphiswaldense , 2008, Mineralogical magazine.

[242]  C. Whiteley,et al.  Bioreduction of platinum salts into nanoparticles: a mechanistic perspective , 2008, Biotechnology Letters.

[243]  Adam Brown,et al.  Preparation of silica stabilized Tobacco mosaic virus templates for the production of metal and layered nanoparticles. , 2009, Journal of colloid and interface science.

[244]  Absar Ahmad,et al.  Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium Oxysporum , 2007 .

[245]  M. Zenk,et al.  The formation of Cd-phytochelatin complexes in plant cell cultures , 1997 .

[246]  Saeed Sarkar,et al.  Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process , 2009 .

[247]  R. Frankel,et al.  Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1 , 2006 .

[248]  Balaprasad Ankamwar,et al.  Biological synthesis of triangular gold nanoprisms , 2004, Nature materials.

[249]  Angell Understanding microbially influenced corrosion as biofilm-mediated changes in surface chemistry , 1999, Current opinion in biotechnology.

[250]  C. Mulligan,et al.  Bioremediation of Metal Contamination , 2003, Environmental monitoring and assessment.

[251]  S. Laskar,et al.  Preconcentration of 198Au in a green alga, Rhizoclonium , 2006 .

[252]  D. Rouch,et al.  Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance , 1995, Journal of Industrial Microbiology.

[253]  H. Bai,et al.  Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. , 2009, Colloids and surfaces. B, Biointerfaces.

[254]  Guenter Schmid,et al.  Large clusters and colloids. Metals in the embryonic state , 1992 .

[255]  K. Philippot,et al.  A new and specific mode of stabilization of metallic nanoparticles. , 2008, Chemical communications.

[256]  S. Brock Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Book) , 2004 .

[257]  Sidorov,et al.  Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide-Polyethyleneimine Block Copolymers. , 1999, Journal of colloid and interface science.

[258]  Vipul Bansal,et al.  Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum , 2004 .

[259]  Satyajyoti Senapati,et al.  Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species , 2003 .

[260]  Qingbiao Li,et al.  Biosorption and bioreduction of diamine silver complex by Corynebacterium , 2005 .

[261]  T. Matsunaga,et al.  Noncovalent Immobilization of Streptavidin on In Vitro- and In Vivo-Biotinylated Bacterial Magnetic Particles , 2008, Applied and Environmental Microbiology.

[262]  Anima Nanda,et al.  Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[263]  S. Mahdavi,et al.  Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media , 2006 .

[264]  Sulabha K. Kulkarni,et al.  Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589 , 2009 .

[265]  Satyajyoti Senapati,et al.  Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. , 2002, Journal of the American Chemical Society.

[266]  W. E. Rauser Roots of Maize Seedlings Retain Most of their Cadmium Through Two Complexes , 2000 .

[267]  K. Prasad,et al.  Lactobacillusassisted synthesis of titanium nanoparticles , 2007, Nanoscale Research Letters.

[268]  A. Soper,et al.  Nanosized strongly-magnetic bacterially-produced iron sulfide materials , 1999 .

[269]  D. Lovley,et al.  Dissimilatory metal reduction. , 1993, Annual review of microbiology.

[270]  A. Rodina,et al.  Confined excitons, trions and biexcitons in semiconductor microcrystals , 1989 .

[271]  D. Lovley Fe(III) and Mn(IV) Reduction , 2000 .

[272]  F. Pooley Bacteria accumulate silver during leaching of sulphide ore minerals , 1982, Nature.

[273]  D. Lovley,et al.  Reduction of uranium by Desulfovibrio desulfuricans , 1992, Applied and environmental microbiology.

[274]  M. J. Baedecker,et al.  Modern marine sediments as a natural analog to the chemically stressed environment of a landfill , 1979 .

[275]  Beom Soo Kim,et al.  Rapid biological synthesis of silver nanoparticles using plant leaf extracts , 2009, Bioprocess and biosystems engineering.

[276]  Derek R. Lovley,et al.  Bioremediation of uranium contamination with enzymatic uranium reduction , 1992 .

[277]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[278]  Jon R. Lloyd,et al.  Bioremediation of Radionuclide-Containing Wastewaters , 2000 .

[279]  G. R. Heath,et al.  Remobilization of transition metals in surficial pelagic sediments from the eastern Pacific , 1984 .

[280]  M. Kowshik,et al.  Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3 , 2002 .

[281]  E. Grill,et al.  Phytochelatins: The Principal Heavy-Metal Complexing Peptides of Higher Plants , 1985, Science.

[282]  A. Philipse,et al.  Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability , 2002 .

[283]  M. Kowshik,et al.  Microbial synthesis of semiconductor PbS nanocrystallites , 2002 .

[284]  R. Kumar,et al.  Bioreduction of AuCl(4)(-) Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance. , 2001, Angewandte Chemie.

[285]  K. Horikoshi,et al.  Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. , 1998, Archives of Microbiology.

[286]  Hong-Juan Bai,et al.  Biological Synthesis of Semiconductor Zinc Sulfide Nanoparticles by Immobilized Rhodobacter sphaeroides , 2006, Biotechnology Letters.

[287]  Indranil Sarkar,et al.  Extracellular biosynthesis of magnetite using fungi. , 2006, Small.

[288]  M. Natan,et al.  Heightened Electromagnetic Fields between Metal Nanoparticles: Surface Enhanced Raman Scattering from Metal−Cytochrome c-Metal Sandwiches , 1998 .

[289]  Priyabrata Mukherjee,et al.  The use of microorganisms for the formation of metal nanoparticles and their application , 2005, Applied Microbiology and Biotechnology.

[290]  Derek R. Lovley,et al.  Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.

[291]  T. D. Brock,et al.  Ferric iron reduction by sulfur- and iron-oxidizing bacteria , 1976, Applied and environmental microbiology.

[292]  M. Goldhaber,et al.  The role of sulfate‐reducing bacteria in the deposition of sedimentary uranium ores , 1985 .

[293]  B. Kim,et al.  Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract , 2008 .

[294]  Raja Mazumder,et al.  Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium , 1995 .

[295]  D. Philip,et al.  Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[296]  Liangbao Yang,et al.  Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract , 2007 .

[297]  Yu Zhang,et al.  Biological Synthesis of Gold Nanowires Using Extract of Rhodopseudomonas capsulata , 2008, Biotechnology progress.

[298]  R. Kumar,et al.  Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum , 2002, Chembiochem : a European journal of chemical biology.

[299]  G. Southam,et al.  Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)--chloride complexes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[300]  J. Xie,et al.  Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria , 2009, Nano research.

[301]  Ning Gu,et al.  Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata , 2007 .

[302]  D. Lovley Bioremediation of organic and metal contaminants with dissimilatory metal reduction , 1995, Journal of Industrial Microbiology.

[303]  R. Murray,et al.  Sites of metal deposition in the cell wall of Bacillus subtilis , 1980, Journal of bacteriology.

[304]  M. Kowshik,et al.  Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. , 2002, Biotechnology and bioengineering.