Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials.

Density functional theory simulations show that modifying rutile TiO(2) with metal oxide nanoclusters produces composite materials with potential visible light photocatalytic activity.

[1]  Lianmao Peng,et al.  Hybrid CdSe/TiO2 nanowire photoelectrodes: Fabrication and photoelectric performance , 2011 .

[2]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[3]  Yichun Liu,et al.  Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity , 2011 .

[4]  P. Edwards,et al.  Exceptional visible-light-driven photocatalytic activity over BiOBr-ZnFe2O4 heterojunctions. , 2011, Chemical communications.

[5]  H. Tada,et al.  Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst. , 2011, Angewandte Chemie.

[6]  H. Tada,et al.  Visible-Light-Active Iron Oxide-Modified Anatase Titanium(IV) Dioxide , 2011 .

[7]  M. Nolan,et al.  Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110). , 2011, Physical chemistry chemical physics : PCCP.

[8]  S. Shevlin,et al.  Electronic and Optical Properties of Doped and Undoped (TiO2)n Nanoparticles , 2010 .

[9]  A. Walsh,et al.  Evolutionary structure prediction and electronic properties of indium oxide nanoclusters. , 2010, Physical chemistry chemical physics : PCCP.

[10]  Niall J. English,et al.  First-Principles Calculation of Synergistic (N, P)-Codoping Effects on the Visible-Light Photocatalytic Activity of Anatase TiO2 , 2010 .

[11]  R. Rousseau,et al.  Thermally-driven processes on rutile TiO2(1 1 0)-(1 × 1): A direct view at the atomic scale , 2010 .

[12]  Z. Dong,et al.  The Origin of Visible Light Absorption in Chalcogen Element (S, Se, and Te)-Doped Anatase TiO2 Photocatalysts , 2010 .

[13]  P. Fang,et al.  Mo + C codoped TiO(2) using thermal oxidation for enhancing photocatalytic activity. , 2010, ACS applied materials & interfaces.

[14]  N. Dimitrijević,et al.  Iron(III)-oxo Centers on TiO2 for Visible-Light Photocatalysis , 2010 .

[15]  Jiaguo Yu,et al.  Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures , 2009 .

[16]  L. Bian,et al.  Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2 , 2009 .

[17]  G. Pacchioni,et al.  Cr/Sb co-doped TiO2 from first principles calculations , 2009 .

[18]  Suhuai Wei,et al.  Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. , 2009, Physical review letters.

[19]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[20]  G. Thornton,et al.  Chemical reactions on rutile TiO2(110). , 2008, Chemical Society reviews.

[21]  Zhengxiao Guo,et al.  Microstructure and mechanical properties of stainless steel under Nd:YAG pulsed laser irradiation , 2008 .

[22]  C. Humphreys,et al.  High resolution transmission electron microscopy and three-dimensional atom probe microscopy as complementary techniques for the high spatial resolution analysis of GaN based quantum well systems , 2008 .

[23]  Gaetano Granozzi,et al.  The Nature of Defects in Fluorine-Doped TiO2 , 2008 .

[24]  Jingbo Li,et al.  First-principles study of the electronic structures and magnetic properties of 3d transition metal-doped anatase TiO2 , 2008 .

[25]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[26]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[27]  Michael Grätzel,et al.  Dye-Sensitized Solid-State Heterojunction Solar Cells , 2005 .

[28]  I. Stensgaard,et al.  Electron Transfer-Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface , 2004, Science.

[29]  Renald Schaub,et al.  Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.

[30]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .