Unlike Lennard-Jones parameters for vapor-liquid equilibria

Abstract The influence of the unlike Lennard–Jones (LJ) parameters on vapor–liquid equilibria of mixtures is investigated and the performance of eleven combining rules is assessed. In the first part of this work, the influence of the unlike LJ size and energy parameter on vapor pressure, bubble density and dew point composition is systematically studied for the mixtures CO + C2H6 and N2 + C3H6, respectively. It is found that mixture vapor pressure depends strongly both on the size and the energy parameter whereas the bubble density depends mostly on the size parameter and the dew point composition is rather insensitive to both parameters. In preceding work, unlike LJ parameters were adjusted to experimental binary vapor–liquid equilibria for 44 real mixtures. On the basis of these results, in the second part of the work eleven combining rules are assessed regarding their predictive power. A comparison with the adjusted unlike LJ parameters determined from the fit shows that none of the eleven combining rules yields appropriate parameters in general. To obtain an accurate mixture model, the unlike dispersive interaction should therefore be adjusted to experimental binary data. The results from the present work indicate that it is sufficient to use the Lorenz rule for the unlike LJ size parameter and to fit the unlike LJ energy parameter to the vapor pressure.

[1]  H. Hasse,et al.  A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids , 2004, 0906.1709.

[2]  P. Ungerer,et al.  Application of Gibbs Ensemble and NPT Monte Carlo Simulation to the Development of Improved Processes for H2S-rich Gases , 2004 .

[3]  J. Fischer,et al.  Intermolecular force parameters for unlike pairs , 1982 .

[4]  M. Wendland,et al.  Extension of the NpT + test particle method for the calculation of phase equilibria of nitrogen + ethane , 2000 .

[5]  Recknagel,et al.  Dissociation channels of multiply charged van der Waals clusters. , 1988, Physical review. A, General physics.

[6]  Johann Fischer,et al.  Prediction of thermodynamic properties of fluid mixtures by molecular dynamics simulations: methane-ethane , 1992 .

[7]  C. Kong Combining rules for intermolecular potential parameters. II. Rules for the Lennard‐Jones (12–6) potential and the Morse potential , 1973 .

[8]  Keith E. Laidig,et al.  PROPERTIES OF ATOMS IN MOLECULES : ATOMIC POLARIZABILITIES , 1990 .

[9]  J. McCoubrey,et al.  Intermolecular forces between unlike molecules. A more complete form of the combining rules , 1960 .

[10]  J. Kestin,et al.  Equilibrium and transport properties of the noble gases and their mixtures at low density , 1984 .

[11]  H. Hasse,et al.  Henry’s law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: Prediction from molecular simulation , 2005, 0904.4793.

[12]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[13]  F. Smith Atomic Distortion and the Combining Rule for Repulsive Potentials , 1972 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  J. Renuncio,et al.  Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long‐range dispersion energy and an atomic distortion model for the repulsive interactions. , 1982 .

[16]  B. Srivastava,et al.  Thermal Diffusion of Gas Mixtures and Forces between Unlike Molecules , 1953 .

[17]  M. Hiza,et al.  A correlation for the prediction of interaction energy parameters for mixtures of small molecules , 1970 .

[18]  J. Renuncio,et al.  Combination rules for two‐body van der Waals coefficients , 1980 .

[19]  F. Kurata,et al.  Vapor‐liquid and liquid‐liquid vapor phase behavior of the carbon monoxide‐propane and the carbon monoxide‐ethane systems , 1971 .

[20]  Hans Hasse,et al.  Vapor–liquid equilibria of mixtures containing nitrogen, oxygen, carbon dioxide, and ethane , 2003 .

[21]  J. Renuncio,et al.  Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long‐range dispersion energy , 1982 .

[22]  Arnold T. Hagler,et al.  New combining rules for rare gas van der waals parameters , 1993, J. Comput. Chem..

[23]  J. Delhommelle,et al.  Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation , 2001 .

[24]  G. Halsey,et al.  Second Virial Coefficients of Argon, Krypton, and Argon‐Krypton Mixtures at Low Temperatures , 1962 .

[25]  Hans Hasse,et al.  Molecular models of unlike interactions in fluid mixtures , 2005 .

[26]  Harold G. Rackett Equation of state for saturated liquids , 1970 .

[27]  Hans Hasse,et al.  A set of molecular models for carbon monoxide and halogenated hydrocarbons , 2003 .

[28]  J. Fischer,et al.  Vapor-liquid equilibria of binary mixtures containing methane, ethane, and carbon dioxide from molecular simulation , 1996 .

[29]  Calvin F. Spencer,et al.  Prediction of bubble-point density of mixtures , 1973 .

[30]  David A. Rockstraw,et al.  A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters , 2004, J. Comput. Chem..

[31]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[32]  H. Hasse,et al.  Self Diffusion and Binary Maxwell–Stefan Diffusion in Simple Fluids with the Green–Kubo Method , 2009, 0904.4629.

[33]  J. Haile,et al.  The influence of unlike molecule interaction parameters on liquid mixture excess properties , 1989 .

[34]  F. Kohler Zur Berechnung der Wechselwirkungsenergie zwischen ungleichen Molekülen in binären flüssigen Mischungen , 1957 .

[35]  A. Cooper,et al.  Polymer Synthesis Using Hydrofluorocarbon Solvents. 1. Synthesis of Cross-Linked Polymers by Dispersion Polymerization in 1,1,1,2-Tetrafluoroethane , 2002 .

[36]  Hans Hasse,et al.  A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .

[37]  P. Lugol Annalen der Physik , 1906 .

[38]  H. A. Lorentz Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase , 1881 .

[39]  E. A. Mason,et al.  Thermal Diffusion and Diffusion in Hydrogen‐Krypton Mixtures , 1964 .

[40]  P. Sikora Combining rules for spherically symmetric intermolecular potentials , 1970 .

[41]  J. Kestin,et al.  EQUILIBRIUM AND TRANSPORT PROPERTIES OF GAS MIXTURES AT LOW DENSITY : ELEVEN POLYATOMIC GASES AND FIVE NOBLE GASES , 1990 .

[42]  H. Hasse,et al.  Grand Equilibrium: vapour-liquid equilibria by a new molecular simulation method , 2002, 0905.0612.

[43]  J. Fischer,et al.  Vapour liquid equilibria of mixtures from the NpT plus test particle method , 1995 .

[44]  M. Hiza,et al.  Comment on ’’Intermolecular forces in mixtures of helium with the heavier noble gases’’ , 1978 .

[45]  Maurizio Fermeglia,et al.  Development of an all-atoms force field from ab initio calculations for alternative refrigerants , 2003 .

[46]  E. A. Mason,et al.  On combination rules for molecular van der waals potential-well parameters , 1988 .

[47]  Donald B. Robinson,et al.  The development of the Peng - Robinson equation and its application to phase equilibrium in a system containing methanol , 1985 .

[48]  Hans Hasse,et al.  Prediction of Joule–Thomson inversion curves for pure fluids and one mixture by molecular simulation , 2005 .

[49]  Graham Richards,et al.  Intermolecular forces , 1978, Nature.

[50]  F. London,et al.  The general theory of molecular forces , 1937 .

[51]  A. Fredenslund,et al.  Vapour-liquid equilibrium data for the systems C2H6 + N2, C2H4 + N2, C3H8 + N2, and C3H6 + N2 , 1977 .

[52]  K. Tang,et al.  New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems , 1986 .

[53]  C. Tanford Macromolecules , 1994, Nature.

[54]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[55]  J. Prausnitz,et al.  Vapor‐liquid equilibria at high pressures: Calculation of partial molar volumes in nonpolar liquid mixtures , 1967 .

[56]  R. Good,et al.  Test of Combining Rules for Intermolecular Distances. Potential Function Constants from Second Virial Coefficients , 1971 .

[57]  T. Reed The Theoretical Energies of Mixing for Fluorocarbon-Hydrocarbon Mixtures. , 1955 .