An Introduction to Relativistic Theory as Implemented in GRASP

Computational atomic physics continues to play a crucial role in both increasing the understanding of fundamental physics (e.g., quantum electrodynamics and correlation) and producing atomic data for interpreting observations from large-scale research facilities ranging from fusion reactors to high-power laser systems, space-based telescopes and isotope separators. A number of different computational methods, each with their own strengths and weaknesses, is available to meet these tasks. Here, we review the relativistic multiconfiguration method as it applies to the General Relativistic Atomic Structure Package [grasp2018, C. Froese Fischer, G. Gaigalas, P. Jönsson, J. Bieroń, Comput. Phys. Commun. (2018). DOI: 10.1016/j.cpc.2018.10.032]. To illustrate the capacity of the package, examples of calculations of relevance for nuclear physics and astrophysics are presented.

[1]  M. Godefroid,et al.  Re-Evaluation of the Nuclear Magnetic Octupole Moment of 209Bi , 2022, Atoms.

[2]  G. Gaigalas A Program Library for Computing Pure Spin–Angular Coefficients for One- and Two-Particle Operators in Relativistic Atomic Theory , 2022, Atoms.

[3]  C. Fischer,et al.  Variational Methods for Atoms and the Virial Theorem , 2022, Atoms.

[4]  R. Si,et al.  Reducing the computational load - atomic multiconfiguration calculations based on configuration state function generators , 2022, Comput. Phys. Commun..

[5]  M. Godefroid,et al.  Relativistic radial electron density functions and natural orbitals from GRASP2018 , 2022, Comput. Phys. Commun..

[6]  R. Si,et al.  Benchmarking Multiconfiguration Dirac–Hartree–Fock Calculations for Astrophysics: Si-like Ions from Cr xi to Zn xvii , 2021, The Astrophysical Journal Supplement Series.

[7]  J. P. Marques,et al.  Simulation of 125I Auger emission spectrum with new atomic parameters from MCDHF calculations , 2021, Journal of Quantitative Spectroscopy and Radiative Transfer.

[8]  C. Fischer Towards B-Spline Atomic Structure Calculations , 2021, Atoms.

[9]  R. Si,et al.  Benchmarking calculations with spectroscopic accuracy of level energies and wavelengths in W LVII–W LXII tungsten ions , 2021, Journal of Quantitative Spectroscopy and Radiative Transfer.

[10]  C. Fischer,et al.  Numerical Procedures for Relativistic Atomic Structure Calculations , 2020, Atoms.

[11]  Per Jönsson,et al.  Hfszeeman95 - A program for computing weak and intermediate magnetic-field- and hyperfine-induced transition rates , 2020, Comput. Phys. Commun..

[12]  R. Si,et al.  A First Spectroscopic Measurement of the Magnetic-field Strength for an Active Region of the Solar Corona , 2020, The Astrophysical Journal.

[13]  Masaomi Tanaka,et al.  Extended Calculations of Energy Levels and Transition Rates for Singly Ionized Lanthanide Elements. I. Pr–Gd , 2020, The Astrophysical Journal Supplement Series.

[14]  Masaomi Tanaka,et al.  Energy Level Structure and Transition Data of Er2+ , 2020, The Astrophysical Journal Supplement Series.

[15]  G. Gaigalas,et al.  Coupling: The program for searching optimal coupling scheme in atomic theory , 2020, Comput. Phys. Commun..

[16]  M. Godefroid,et al.  Coulomb (Velocity) Gauge Recommended in Multiconfiguration Calculations of Transition Data Involving Rydberg Series , 2019 .

[17]  K. Kawaguchi,et al.  Systematic opacity calculations for kilonovae , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  Gediminas Gaigalas,et al.  GRASP2018 - A Fortran 95 version of the General Relativistic Atomic Structure Package , 2019, Comput. Phys. Commun..

[19]  P. Jonsson,et al.  Extended transition rates and lifetimes in Al I and Al II from systematic multiconfiguration calculations , 2018, Astronomy & Astrophysics.

[20]  Masaomi Tanaka,et al.  Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers , 2017, 1708.09101.

[21]  P. Jönsson,et al.  Large-scale calculations of atomic level and transition properties in the aluminum isoelectronic sequence from Ti X through Kr XXIV, Xe XLII, and W LXII , 2017 .

[22]  C. Fischer,et al.  Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy: Applications to Astrophysics , 2017 .

[23]  Gediminas Gaigalas,et al.  JJ2LSJ Transformation and Unique Labeling for Energy Levels , 2017 .

[24]  C. Fischer,et al.  Combining Multiconfiguration and Perturbation Methods: Perturbative Estimates of Core–Core Electron Correlation Contributions to Excitation Energies in Mg-Like Iron , 2017 .

[25]  N. Stone Table of Nuclear Electric Quadrupole Moments , 2016 .

[26]  T. Brage,et al.  Resolving a discrepancy between experimental and theoretical lifetimes in atomic negative ions , 2016, 1606.08361.

[27]  I. P. Grant,et al.  Ab initio MCDHF calculations of electron–nucleus interactions , 2015 .

[28]  V. M. Shabaev,et al.  QEDMOD: Fortran program for calculating the model Lamb-shift operator , 2015, Comput. Phys. Commun..

[29]  M. Andersson,et al.  Unexpected transitions induced by spin-dependent, hyperfine and external magnetic-field interactions , 2014 .

[30]  M. Godefroid,et al.  Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations , 2014, 1406.1720.

[31]  M. Godefroid,et al.  Validation and Implementation of Uncertainty Estimates of Calculated Transition Rates , 2014 .

[32]  I. P. Grant,et al.  New version: Grasp2K relativistic atomic structure package , 2013, Comput. Phys. Commun..

[33]  C. T. Chantler,et al.  Self-energy screening approximations in multi-electron atoms , 2013 .

[34]  M. Godefroid,et al.  Isotope shift on the chlorine electron affinity revisited by an MCHF/CI approach , 2013, 1301.1598.

[35]  C. Fischer,et al.  A partitioned correlation function interaction approach for describing electron correlation in atoms , 2013, 1301.0835.

[36]  G. Zanna Benchmarking atomic data for astrophysics: a first look at the soft X-ray lines , 2012, 1208.2142.

[37]  Tosio Kato,et al.  On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics , 2011 .

[38]  E. Gaidamauskas,et al.  Tensorial form and matrix elements of the relativistic nuclear recoil operator , 2011, 1106.1988.

[39]  Charlotte Froese Fischer,et al.  A B-spline Hartree-Fock program , 2011, Comput. Phys. Commun..

[40]  P. Burke,et al.  R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes , 2011 .

[41]  P. Jönsson,et al.  Are MCDF calculations 101% correct in the super-heavy elements range? , 2011 .

[42]  A. Pálffy Nuclear effects in atomic transitions , 2010, 1106.3218.

[43]  H. Kluge Atomic physics techniques for studying nuclear ground state properties, fundamental interactions and symmetries: status and perspectives , 2010 .

[44]  P. Jönsson,et al.  Two-electron–one-photon M1 and E2 transitions between the states of the 2p3 and 2s22p odd configurations for B-like ions with 18 ≤ Z ≤ 92 , 2010 .

[45]  Gediminas Gaigalas,et al.  Multiconfiguration electron density function for the ATSP2K-package , 2009, Comput. Phys. Commun..

[46]  Y. Ishikawa,et al.  Multireference Møller–Plesset perturbation theory results on levels and transition rates in Al-like ions of iron group elements , 2009 .

[47]  Martin Andersson,et al.  HFSZEEMAN - A program for computing weak and intermediate field fine and hyperfine structure Zeeman splittings from MCDHF wave functions , 2008, Comput. Phys. Commun..

[48]  Gediminas Gaigalas,et al.  An MCHF atomic-structure package for large-scale calculations , 2007, Comput. Phys. Commun..

[49]  P. Jönsson,et al.  Multiconfiguration Dirac-Hartree-Fock calculations of transition rates and lifetimes of the eight lowest excited levels of radium , 2007, physics/0701239.

[50]  I. P. Grant,et al.  Relativistic quantum theory of atoms and molecules , 2006 .

[51]  C. Fischer,et al.  Relativistic energy levels, lifetimes, and transition probabilities for the sodium-like to argon-like sequences , 2006 .

[52]  Y. Liu,et al.  MCDF calculations for the lowest excited states in the Zn-like sequence , 2006 .

[53]  E. Landi Degl'Innocenti,et al.  Polarization in spectral lines , 2004 .

[54]  I. Angeli,et al.  A consistent set of nuclear rms charge radii: properties of the radius surface R(N,Z) ☆ , 2004 .

[55]  Charlotte Froese Fischer,et al.  Douglas Rayner Hartree : His life in science and computing , 2003 .

[56]  P. Pyykkö,et al.  Search for effective local model potentials for simulation of quantum electrodynamic effects in relativistic calculations , 2003 .

[57]  P. Pyykkö Spectroscopic nuclear quadrupole moments , 2001 .

[58]  X. Tong,et al.  Fine-structure in 3d4 States of Highly Charged Ti-like Ions , 2001 .

[59]  S. Fritzsche,et al.  Reduced Coefficients of Fractional Parentage and Matrix Elements of the Tensor W(kqkj) in jj-Coupling , 2000 .

[60]  Charlotte Froese Fischer,et al.  The MCHF atomic-structure package , 2000 .

[61]  Isaiah Shavitt,et al.  The history and evolution of configuration interaction , 1998 .

[62]  C. Fischer,et al.  An efficient approach for spin - angular integrations in atomic structure calculations , 1997, physics/0405101.

[63]  C. Nazé,et al.  ris3: A program for relativistic isotope shift calculations , 1997, Comput. Phys. Commun..

[64]  C. Fischer,et al.  Extension of the HF program to partially filled f-subshells , 1996, physics/0406002.

[65]  Z. Rudzikas,et al.  On the secondly quantized theory of the many-electron atom , 1996, physics/0405096.

[66]  Per Jönsson,et al.  HFS92: A program for relativistic atomic hyperfine structure calculations , 1996 .

[67]  I. P. Grant,et al.  GRASP92: a package for large-scale relativistic atomic structure calculations , 1996, Comput. Phys. Commun..

[68]  A. Stathopoulos,et al.  A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix , 1994 .

[69]  F. A. Parpia,et al.  GRASP: A general-purpose relativistic atomic structure program , 1989 .

[70]  C. Palmer Reformulation of the theory of the mass shift , 1987 .

[71]  C. Fischer Self-consistent-field (SCF) and multiconfiguration (MC) Hartree-Fock (HF) methods in atomic calculations: Numerical integration approaches , 1986 .

[72]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[73]  Z. Rudzikas,et al.  Quasi-spin method for jj coupling in the theory of many-electron atoms , 1980 .

[74]  I. Grant Relativistic atomic structure calculations , 1979 .

[75]  I P Grant,et al.  Gauge invariance and relativistic radiative transitions , 1974 .

[76]  D. Mayers,et al.  RELATIVISTIC ATOMIC WAVE FUNCTIONS. , 1971 .

[77]  B. H. Flowers,et al.  A GENERALIZED QUASI-SPIN FORMALISM , 1964 .

[78]  C. Froese NUMERICAL SOLUTION OF THE HARTREE–FOCK EQUATIONS , 1963 .

[79]  J. Bahcall,et al.  RELATIVISTIC Z-DEPENDENT THEORY OF MANY-ELECTRON ATOMS , 1962 .

[80]  I. Grant Relativistic self-consistent fields , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[81]  Freeman J. Dyson,et al.  Irreducible Tensorial Sets , 1960 .

[82]  D. Layzer On a screening theory of atomic spectra , 1959 .

[83]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .

[84]  D. Mayers Relativistic self-consistent field calculation for mercury , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[85]  W. Hartree,et al.  Self-Consistent Field, Including Exchange and Superposition of Configurations, with Some Results for Oxygen , 1939 .

[86]  D. R. Hartree,et al.  The Mechanical Integration of Differential Equations , 1938, The Mathematical Gazette.

[87]  Bertha Swirles,et al.  The Relativistic Self-Consistent Field , 1935 .

[88]  D. Hartree,et al.  Self-consistent field, with exchange, for beryllium , 1935 .

[89]  P. Dirac The quantum theory of the electron , 1928 .

[90]  R. C. Johnson,et al.  Angular Momentum in Quantum Mechanics , 2015 .

[91]  I. Grant A program to calculate angular momentum coefficients in relativistic atomic structure — Revised version , 1984 .

[92]  W. D. Robb A program to evaluate the reduced matrix elements of summations of one-particle tensor operators , 1984 .

[93]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[94]  Charlotte Froese Fischer,et al.  A general multi-configuration Hartree-Fock program , 1984 .

[95]  Ian P. Grant,et al.  A general program to calculate angular momentum coefficients in relativistic atomic structure , 1984 .

[96]  I. P. Grant,et al.  A program to calculate transverse Breit and QED corrections to energy levels in a multiconfiguration Dirac-Fock environment , 1984 .

[97]  Ian P. Grant,et al.  An atomic multiconfigurational Dirac-Fock package , 1984 .

[98]  Ian P. Grant,et al.  RELATIVISTIC CALCULATION OF ATOMIC STRUCTURES. , 1970 .

[99]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[100]  D R Hartree F R S The calculation of atomic structures , 1947 .