Enhanced light absorption in thin-film tandem solar cells using a bottom metallic nanograting

[1]  F. Lederer,et al.  Three‐Dimensional Photonic Crystal Intermediate Reflectors for Enhanced Light‐Trapping in Tandem Solar Cells , 2011, Advanced materials.

[2]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[3]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[4]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[5]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[6]  Christophe Ballif,et al.  Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells , 2009 .

[7]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[8]  Daniel Derkacs,et al.  Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices , 2008 .

[9]  J. Krč,et al.  The effects of enhanced light trapping in tandem micromorph silicon solar cells , 2006 .

[10]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[11]  Z. Qiao,et al.  Dielectric modelling of optical spectra of thin In2O3 : Sn films , 2002 .

[12]  Diego Fischer,et al.  Microcrystalline silicon and micromorph tandem solar cells , 1999 .

[13]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .