Brain Surface Conformal Parameterization Using Riemann Surface Structure

In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks.

[1]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[2]  Martin Rumpf,et al.  Surface processing methods for point sets using finite elements , 2004, Comput. Graph..

[3]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[4]  Hervé Delingette,et al.  Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis , 1999, IPMI.

[5]  Alan C. Evans,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2000, Nature.

[6]  Lok Ming Lui,et al.  Hippocampal Surface Analysis Using Spherical Harmonic Function Applied to Surface Conformal Mapping , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[7]  David A. Rottenberg,et al.  Quantitative evaluation of three cortical surface flattening methods , 2005, NeuroImage.

[8]  Kiralee M. Hayashi,et al.  Dynamics of Gray Matter Loss in Alzheimer's Disease , 2003, The Journal of Neuroscience.

[9]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[10]  F. Mémoli,et al.  Implicit brain imaging , 2004, NeuroImage.

[11]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[12]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[13]  Paul M. Thompson,et al.  Cortical surface parameterization by p-harmonic energy minimization , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[14]  Robert T. Schultz,et al.  A New Approach to 3D Sulcal Ribbon Finding from MR Images , 1999, MICCAI.

[15]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[16]  Lok Ming Lui,et al.  Optimization of Brain Conformal Mapping with Landmarks , 2005, MICCAI.

[17]  Paul M. Thompson,et al.  Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines , 2007, NeuroImage.

[18]  Jean-Philippe Thirion The extremal mesh and the understanding of 3D surfaces , 2004, International Journal of Computer Vision.

[19]  J. Rapoport,et al.  Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Paul M. Thompson,et al.  Automated Surface Matching Using Mutual Information Applied to Riemann Surface Structures , 2005, MICCAI.

[21]  Alan C. Evans,et al.  GROWTH PATTERNS IN THE DEVELOPING HUMAN BRAIN DETECTED USING CONTINUUM-MECHANICAL TENSOR MAPPING , 1999 .

[22]  Paul M. Thompson,et al.  3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS , 2006, NeuroImage.

[23]  Richard M. Leahy,et al.  Optimization method for creating semi-isometric flat maps of the cerebral cortex , 2000, Medical Imaging: Image Processing.

[24]  Paul M. Thompson,et al.  Surface parameterization using Riemann surface structure , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[25]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[26]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[27]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[28]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[29]  A. Toga,et al.  Three-dimensional mapping of temporo-limbic regions and the lateral ventricles in schizophrenia: gender effects , 2001, Biological Psychiatry.

[30]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Márta Fidrich,et al.  Iso-surface extraction in nD applied to tracking feature curves across scale , 1998, Image Vis. Comput..

[32]  Isabelle Bloch,et al.  A Mean Curvature Based Primal Sketch to Study the Cortical Folding Process from Antenatal to Adult Brain , 2001, MICCAI.

[33]  Arno Klein,et al.  Mindboggle: a scatterbrained approach to automate brain labeling , 2005, NeuroImage.

[34]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[35]  Philip L. Bowers,et al.  INTRODUCTION TO CIRCLE PACKING: A REVIEW , 2008 .

[36]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[37]  Paul M. Thompson,et al.  Brain Surface Conformal Parameterization with Algebraic Functions , 2006, MICCAI.

[38]  Paul M. Thompson,et al.  Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method , 2005, NeuroImage.

[39]  Jerry L. Prince,et al.  Program for Assisted Labeling of Sulcal Regions (PALS): description and reliability , 2005, NeuroImage.

[40]  Michael I. Miller,et al.  Dynamic Programming Generation of Curves on Brain Surfaces , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Abraham Z. Snyder,et al.  Surface-Based Analyses of the Human Cerebral Cortex , 1999 .

[42]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[43]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[44]  M. Miller,et al.  Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. , 2002, The American journal of psychiatry.

[45]  Kiralee M. Hayashi,et al.  Abnormal Cortical Complexity and Thickness Profiles Mapped in Williams Syndrome , 2005, The Journal of Neuroscience.

[46]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[47]  H A Drury,et al.  Computational methods for reconstructing and unfolding the cerebral cortex. , 1995, Cerebral cortex.

[48]  Shing-Tung Yau,et al.  Optimal Global Conformal Surface Parameterization for Visualization , 2004, Commun. Inf. Syst..

[49]  Gabriele Lohmann,et al.  Automatic Detection of Sulcal Bottom Lines in MR Images of the Human Brain , 1997, IPMI.

[50]  P Hanrahan,et al.  Digital materials and virtual weathering. , 2000, Scientific American.

[51]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[52]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[53]  Kenneth Stephenson,et al.  Cortical cartography using the discrete conformal approach of circle packings , 2004, NeuroImage.

[54]  Thomas Lange,et al.  A Statistical Shape Model for the Liver , 2002, MICCAI.

[55]  Paul M. Thompson,et al.  A Framework for Registration, Statistical Characterization and Classification of Cortically Constrained Functional Imaging Data , 2005, IPMI.

[56]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[57]  Thomas F. Nugent,et al.  Dynamic mapping of human cortical development during childhood through early adulthood. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Jürgen Jost,et al.  Compact Riemann Surfaces - An Introduction to Contemporary Mathematics, Third Edition , 2006, Universitext.

[59]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[60]  Moo K. Chung,et al.  Diffusion smoothing on brain surface via finite element method , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[61]  Guillermo Sapiro,et al.  A Geometric Method for Automatic Extraction of Sulcal Fundi , 2007, IEEE Transactions on Medical Imaging.

[62]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[63]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[64]  David A. Rottenberg,et al.  Cortical surface flattening using least square conformal mapping with minimal metric distortion , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).