Gamma Rays from Fast Black-hole Winds

Massive black holes at the centers of galaxies can launch powerful wide-angle winds that, if sustained over time, can unbind the gas from the stellar bulges of galaxies. These winds may be responsible for the observed scaling relation between the masses of the central black holes and the velocity dispersion of stars in galactic bulges. Propagating through the galaxy, the wind should interact with the interstellar medium creating a strong shock, similar to those observed in supernovae explosions, which is able to accelerate charged particles to high energies. In this work we use data from the Fermi Large Area Telescope to search for the γ-ray emission from galaxies with an ultrafast outflow (UFO): a fast (v ∼ 0.1 c), highly ionized outflow, detected in absorption at hard X-rays in several nearby active galactic nuclei (AGN). Adopting a sensitive stacking analysis we are able to detect the average γ-ray emission from these galaxies and exclude that it is due to processes other than UFOs. Moreover, our analysis shows that the γ-ray luminosity scales with the AGN bolometric luminosity and that these outflows transfer ∼0.04% of their mechanical power to γ-rays. Interpreting the observed γ-ray emission as produced by cosmic rays (CRs) accelerated at the shock front, we find that the γ-ray emission may attest to the onset of the wind–host interaction and that these outflows can energize charged particles up to the transition region between galactic and extragalactic CRs.

[1]  A. Merloni,et al.  Detection of large-scale X-ray bubbles in the Milky Way halo , 2020, Nature.

[2]  M. Ajello,et al.  The γ-Ray Emission of Star-forming Galaxies , 2020, The Astrophysical Journal.

[3]  N. Schartel,et al.  Searching for ultra-fast outflows in AGN using variability spectra , 2020, 2001.08208.

[4]  O. I. Wong,et al.  BAT AGN spectroscopic survey - XV: the high frequency radio cores of ultra-hard X-ray selected AGN , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  F. Schinzel,et al.  The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope , 2019, The Astrophysical Journal.

[6]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[7]  D. Caprioli,et al.  dHybridR: A Hybrid Particle-in-cell Code Including Relativistic Ion Dynamics , 2019, The Astrophysical Journal.

[8]  A. Franckowiak,et al.  Fermi-LAT Stacking Analysis Technique: An Application to Extreme Blazars and Prospects for their CTA Detection , 2019, The Astrophysical Journal.

[9]  R. D. Baldi,et al.  The origin of radio emission from radio-quiet active galactic nuclei , 2019, Nature Astronomy.

[10]  S. Rabien,et al.  A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty , 2019, Astronomy & Astrophysics.

[11]  M. Mehdipour,et al.  Relation between winds and jets in radio-loud AGN , 2019, Astronomy & Astrophysics.

[12]  A. Domínguez,et al.  A gamma-ray determination of the Universe’s star formation history , 2018, Science.

[13]  L. Carrasco,et al.  Early Science with the Large Millimeter Telescope: An Energy-driven Wind Revealed by Massive Molecular and Fast X-Ray Outflows in the Seyfert Galaxy IRAS 17020+4544 , 2018, The Astrophysical Journal.

[14]  Tum,et al.  AGN outflows as neutrino sources: an observational test , 2018, 1804.01386.

[15]  S. Inoue,et al.  Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds? , 2017, 1712.10168.

[16]  L. A. Antonelli,et al.  Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models , 2017, 1709.03497.

[17]  B. T. Dullo,et al.  Radio jets in NGC 4151: where eMERLIN meets HST , 2017, 1708.07011.

[18]  F. Tombesi,et al.  Evidence for a radiatively driven disc-wind in PDS 456? , 2017, 1708.03546.

[19]  M. Lister,et al.  MOJAVE - XIV. Shapes and opening angles of AGN jets , 2017, 1705.02888.

[20]  A. Loeb,et al.  Contribution of quasar-driven outflows to the extragalactic gamma-ray background , 2016, Nature Physics.

[21]  L. A. Antonelli,et al.  Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068 , 2016, 1609.09664.

[22]  A. Loeb,et al.  Cumulative neutrino background from quasar-driven outflows , 2016, 1607.06476.

[23]  A. Loeb,et al.  Quasar-driven outflows account for the missing extragalactic gamma-ray background , 2016, 1607.06472.

[24]  P. Uttley,et al.  A global look at X-ray time lags in seyfert galaxies , 2016, 1605.02631.

[25]  E. Ros,et al.  MOJAVE. XIII. PARSEC-SCALE AGN JET KINEMATICS ANALYSIS BASED ON 19 YEARS OF VLBA OBSERVATIONS AT 15 GHz , 2016, 1603.03882.

[26]  F. Tombesi,et al.  The Suzaku view of highly ionized outflows in AGN – II. Location, energetics and scalings with bolometric luminosity , 2015 .

[27]  A. S. Johnson,et al.  THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG , 2015, 1511.06778.

[28]  Andrew King,et al.  Powerful Outflows and Feedback from Active Galactic Nuclei , 2015, 1503.05206.

[29]  S. Veilleux,et al.  The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow , 2015, 1503.01481.

[30]  D. Walton,et al.  Black hole feedback in the luminous quasar PDS 456 , 2015, Science.

[31]  F. Tazaki,et al.  Ultrafast outflows in radio-loud active galactic nuclei , 2014, 1406.7252.

[32]  S. Veilleux,et al.  Massive molecular outflows and evidence for AGN feedback from CO observations , 2013, 1311.2595.

[33]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[34]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[35]  U. Maryland,et al.  Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers , 2012, 1212.4851.

[36]  L. Miller,et al.  The Suzaku View of Highly Ionized Outflows in AGN. 1; Statistical Detection and Global Absorber Properties , 2012, 1211.5810.

[37]  A. King,et al.  The M - \sigma relation in different environments , 2012, 1208.1380.

[38]  D. Caprioli Cosmic-ray acceleration in supernova remnants: non-linear theory revised , 2012, 1206.1360.

[39]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[40]  F. Tombesi,et al.  Evidence for ultrafast outflows in radio-quiet AGNs — III. Location and energetics , 2012, 1201.1897.

[41]  G. Morlino,et al.  Strong evidence for hadron acceleration in Tycho’s supernova remnant , 2011, 1105.6342.

[42]  Canada.,et al.  On the correlations between galaxy properties and supermassive black hole mass , 2011, 1109.6265.

[43]  A. Fabian,et al.  How the effects of resonant absorption on black hole reflection spectra can mimic high-velocity outflows , 2011, 1108.5060.

[44]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[45]  D. Caprioli Understanding hadronic $\gamma$-ray emission from supernova remnants , 2011, 1111.0116.

[46]  J. N. Reeves,et al.  DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU , 2010, 1006.3536.

[47]  J. N. Reeves,et al.  Evidence for ultra-fast outflows in radio-quiet AGNs - I. Detection and statistical incidence of Fe K-shell absorption lines , 2010, 1006.2858.

[48]  Iac,et al.  Radio structures of the nuclei of nearby Seyfert galaxies and the nature of the missing diffuse emission , 2009, 0911.0852.

[49]  A. Fabian,et al.  The power output of local obscured and unobscured AGN: crossing the absorption barrier with Swift/ BAT and IRAS , 2009, 0910.5256.

[50]  P. Hopkins,et al.  Quasar feedback: more bang for your buck , 2009, 0904.0649.

[51]  E. Amato,et al.  Non-linear diffusive shock acceleration with free-escape boundary , 2009, 0912.2714.

[52]  V. Springel,et al.  The case for AGN feedback in galaxy groups , 2009, 0911.2641.

[53]  A. R. King,et al.  Black Hole Outflows , 2009, 0911.1639.

[54]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[55]  A. Fabian,et al.  Simultaneous X-ray/optical/UV snapshots of active galactic nuclei from XMM–Newton: spectral energy distributions for the reverberation mapped sample , 2008, 0810.3777.

[56]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[57]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[58]  A. Fabian,et al.  Piecing together the X-ray background : bolometric corrections for active galactic nuclei , 2007, 0708.4308.

[59]  F. Aharonian,et al.  Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants , 2007 .

[60]  W. Bian,et al.  The Eddington Ratios in Seyfert 2 Galaxies with and without Hidden Broad-Line Regions , 2006, astro-ph/0611199.

[61]  E. Amato,et al.  Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence , 2006, astro-ph/0606592.

[62]  D. Wong,et al.  VLBA Identification of the Milliarcsecond Active Nucleus in the Seyfert Galaxy NGC 4151 , 2005, astro-ph/0505141.

[63]  D. Maoz,et al.  The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei , 2005, astro-ph/0504484.

[64]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[65]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[66]  Martin P. Ward,et al.  A Massive X-Ray Outflow from the Quasar PDS 456 , 2003, astro-ph/0307127.

[67]  Cambridge,et al.  Black hole winds , 2003, astro-ph/0305541.

[68]  J. Ostriker,et al.  Quasars: the characteristic spectrum and the induced radiative heating , 2003, astro-ph/0305233.

[69]  Cambridge,et al.  The Lack of Broad-Line Regions in Low Accretion Rate Active Galactic Nuclei as Evidence of Their Origin in the Accretion Disk , 2003, astro-ph/0304128.

[70]  P. O’Brien,et al.  A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143 , 2003, astro-ph/0303603.

[71]  W. Brandt,et al.  CHANDRA Detects Relativistic Broad Absorption Lines from APM 08279+5255 , 2002, astro-ph/0207196.

[72]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[73]  D. L. Bertsch,et al.  The Likelihood Analysis of EGRET Data , 1996 .

[74]  Yasuo Tanaka,et al.  ASCA View of Our Galactic Center: Remains of Past Activities in X-Rays? , 1996 .

[75]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[76]  Mikhail N. Pavlinsky,et al.  The center of the Galaxy in the recent past : a view from Granat , 1993 .

[77]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[78]  A. Wilson,et al.  Radio structures of Seyfert galaxies. IV. Jets (. ) in NGC 1068 and NGC 4151 , 1982 .

[79]  K. Johnston,et al.  Radio jets in NGC 4151 , 1982 .

[80]  J. Skilling Cosmic Ray Streaming—I Effect of Alfvén Waves on Particles , 1975 .