Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy

For nonpolar and semipolar orientations of GaN heteroepitaxially grown on sapphire substrates, the development of growth procedures to improve surface morphology and microstructure has been driven in a largely empirical way. This work attempts to comprehensively link the intrinsic properties of GaN faceted growth, across orientations, in order to understand, design and control growth methods for nonpolar (1 1 2 0) GaN and semipolar (1 1 2 2) GaN on foreign substrates. This is done by constructing a comprehensive series of kinetic Wulff plots (or v-plots) by monitoring the advances of convex and concave facets in selective area growth. A methodology is developed to apply the experimentally determined v-plots to the interpretation and design of evolution dynamics in nucleation and island coalescence. This methodology offers a cohesive and rational model for GaN heteroepitaxy along polar, nonpolar and semipolar orientations, and is broadly extensible to the heteroepitaxy of other materials. We demonstrate furthermore that the control of morphological evolution, based on invoking a detailed knowledge of the v-plots, holds a key to the reduction of microstructural defects through effective bending of dislocations and blocking of stacking faults. The status and outlook of semipolar and nonpolar GaN growth on sapphire substrates will be presented.

[1]  N. Okada,et al.  Direct Growth of m-plane GaN with Epitaxial Lateral Overgrowth from c-plane Sidewall of a-plane Sapphire , 2008 .

[2]  Tien T. Tsong Atom-probe field ion microscopy: Index , 1990 .

[3]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[4]  In‐Hwan Lee,et al.  Effect of Controlled Growth Dynamics on the Microstructure of Nonpolar a-Plane GaN Revealed by X-ray Diffraction , 2009 .

[5]  Yoshio Honda,et al.  Growth of ( 1 1 0 1 ) GaN on a 7-degree off-oriented (0 0 1)Si substrate by selective MOVPE , 2002 .

[6]  S. Denbaars,et al.  Unambiguous evidence of the existence of polarization field crossover in a semipolar InGaN/GaN single quantum well , 2009 .

[7]  S. Denbaars,et al.  High Power and High Efficiency Semipolar InGaN Light Emitting Diodes , 2008 .

[8]  M. Kneissl,et al.  Semipolar GaN grown on m-plane sapphire using MOVPE , 2008 .

[9]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[10]  Colin J. Humphreys,et al.  Improvements in a-plane GaN crystal quality by a two-step growth process , 2008 .

[11]  M. Yang,et al.  Maskless selective growth of semi-polar (112 2) GaN on Si (311) substrate by metal organic vapor phase epitaxy , 2009 .

[12]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[13]  Yoshio Honda,et al.  Growth of non-polar (1 1 2¯ 0)GaN on a patterned (1 1 0)Si substrate by selective MOVPE , 2008 .

[14]  A. A. Allerman,et al.  Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence , 2002 .

[15]  L. Chernozatonskii,et al.  Graphene-based semiconductor nanostructures , 2013 .

[16]  P. Mierry,et al.  Improved semipolar (112¯2) GaN quality using asymmetric lateral epitaxy , 2009 .

[17]  Colin J. Humphreys,et al.  Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method , 2009 .

[18]  Mathieu Leroux,et al.  Cathodoluminescence spectroscopy of epitaxial-lateral-overgrown nonpolar (11-20) and semipolar (11-22) GaN in relation to microstructural characterization , 2007 .

[19]  Naoki Shibata,et al.  m-Plane GaInN Light Emitting Diodes Grown on Patterned a-Plane Sapphire Substrates , 2009 .

[20]  Jianxing Cao,et al.  Influence of growth rate in the early stage of high temperature GaN layer growth on quality of GaN films , 2008 .

[21]  P. Vennégués,et al.  Characterization of structural defects in (110) GaN films grown on (102) sapphire substrates , 2006 .

[22]  Zheng Gong,et al.  Anisotropic structural characteristics of (112̄0) GaN templates and coalesced epitaxial lateral overgrown films deposited on (101̄2) sapphire , 2004 .

[23]  S. Denbaars,et al.  Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes , 2009 .

[24]  Masashi Kubota,et al.  Optical properties of nearly stacking-fault-free m-plane GaN homoepitaxial films grown by metal organic vapor phase epitaxy on low defect density freestanding GaN substrates , 2008 .

[25]  James S. Speck,et al.  Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates , 2005 .

[26]  J. Speck,et al.  Nonpolar and Semipolar Group III Nitride-Based Materials , 2009 .

[27]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[28]  S. Kamiyama,et al.  Nonpolar GaN layers grown by sidewall epitaxial lateral overgrowth : optical evidences for a reduced stacking fault density , 2008 .

[29]  Z. Ren,et al.  Microstructural evolution in m-plane GaN growth on m-plane SiC , 2008 .

[30]  J. Venables,et al.  Selective nucleation and controlled growth: quantum dots on metal, insulator and semiconductor surfaces , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Zahia Bougrioua,et al.  Microstructural Characterization of Semipolar GaN Templates and Epitaxial-Lateral-Overgrown Films Deposited on M-Plane Sapphire by Metalorganic Vapor Phase Epitaxy , 2007 .

[32]  J. Neugebauer,et al.  Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth , 2009 .

[33]  J. Biskupek,et al.  Cathodoluminescence of GaInN quantum wells grown on nonpolar a plane GaN: Intense emission from pit facets , 2010 .

[34]  Kazuyuki Iizuka,et al.  Realization of Low Dislocation GaN/Sapphire Wafers by 3-Step Metalorganic Vapor Phase Epitaxial Growth with Island Induced Dislocation Control , 2003 .

[35]  S. Denbaars,et al.  High-Power Blue-Violet Semipolar (202̄1̄) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2 , 2011 .

[36]  Colin J. Humphreys,et al.  Defect reduction in (112¯2) semipolar GaN grown on m-plane sapphire using ScN interlayers , 2009 .

[37]  Sébastien Chenot,et al.  Semipolar GaN films on patterned r-plane sapphire obtained by wet chemical etching , 2010 .

[38]  Swartzentruber,et al.  Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy. , 1996, Physical review letters.

[39]  Yoshio Honda,et al.  Growth and properties of semi-polar GaN on a patterned silicon substrate , 2009 .

[40]  James S. Speck,et al.  Defect reduction in nonpolar a-plane GaN films using in situ SiNx nanomask , 2006 .

[41]  Nicolas Grandjean,et al.  Study of the epitaxial relationships between III-nitrides and M-plane sapphire , 2010 .

[42]  H. Morkoç,et al.  Optimization of (112¯0) a-plane GaN growth by MOCVD on (11¯02) r-plane sapphire , 2006 .

[43]  R. Caflisch,et al.  Level-set method for island dynamics in epitaxial growth , 2002 .

[44]  David J Srolovitz,et al.  Systematic prediction of kinetically limited crystal growth morphologies. , 2005, Physical review letters.

[45]  Yu Zhang,et al.  Optical emission characteristics of semipolar (1\,1\,\bar{2}\,2) GaN light-emitting diodes grown on m-sapphire and stripe-etched r-sapphire , 2012 .

[46]  Vijay Narayanan,et al.  Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition , 2000 .

[47]  R. Kroeger,et al.  Nonpolar a‐ and m‐plane bulk GaN sliced from boules: structural and optical characteristics , 2007 .

[48]  M. Craford,et al.  Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.

[49]  Qian Sun,et al.  Improving microstructural quality of semipolar (112̱2) GaN on m-plane sapphire by a two-step growth process , 2009 .

[50]  James S. Speck,et al.  Defect reduction in (112̄0) a-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor-phase epitaxy , 2003 .

[51]  Isamu Akasaki,et al.  Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells , 2000 .

[52]  T. Ko,et al.  Morphological and microstructural evolution in the two-step growth of nonpolar a-plane GaN on r-plane sapphire , 2009 .

[53]  Jung-Hoon Song,et al.  Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates , 2011 .

[54]  Qian Sun,et al.  Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN , 2011 .

[55]  C. Humphreys,et al.  Morphological study of non‐polar (11‐20) GaN grown on r‐plane (1‐102) sapphire , 2008 .

[56]  J. P. van der Eerden,et al.  Survey of Monte Carlo simulations of crystal surfaces and crystal growth , 1978 .

[57]  S. Denbaars,et al.  Defect-mediated surface morphology of nonpolar m-plane GaN , 2007 .

[58]  Qian Sun,et al.  Understanding nonpolar GaN growth through kinetic Wulff plots , 2008 .

[59]  Yoshio Honda,et al.  Fabrication and properties of semi‐polar (1‐101) and (11‐22) InGaN/GaN light emitting diodes on patterned Si substrates , 2008 .

[60]  Naoki Shibata,et al.  m-Plane GaN Films Grown on Patterned a-Plane Sapphire Substrates with 3-inch Diameter , 2009 .

[61]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[62]  E. Bauer,et al.  Low energy electron microscopy , 1994 .

[63]  In‐Hwan Lee,et al.  Effect of NH3 flow rate on m-plane GaN growth on m-plane SiC by metalorganic chemical vapor deposition , 2009 .

[64]  James S. Speck,et al.  Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire , 2002 .

[65]  N. Okada,et al.  Growth of Semipolar (112̄2) GaN Layer by Controlling Anisotropic Growth Rates in r-Plane Patterned Sapphire Substrate , 2009 .

[66]  H. Ohta,et al.  Nonpolar/Semipolar GaN Technology for Violet, Blue, and Green Laser Diodes , 2009 .

[67]  Dong-Joon Kim,et al.  Two-step growth of high quality GaN using V/III ratio variation in the initial growth stage , 2004 .

[68]  Colin J. Humphreys,et al.  Assessment of defect reduction methods for nonpolar a-plane GaN grown on r-plane sapphire , 2009 .

[69]  S. Denbaars,et al.  Low extended defect density nonpolar m-plane GaN by sidewall lateral epitaxial overgrowth , 2008 .

[70]  S. Denbaars,et al.  Demonstration of Nonpolar m-Plane InGaN/GaN Light-Emitting Diodes on Free-Standing m-Plane GaN Substrates , 2005 .

[71]  K. Nishiyama,et al.  Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III‐Nitrides: Effects of Reactor Pressure in MOVPE Growth , 1999 .

[72]  K. Fujito,et al.  Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE , 2009 .

[73]  Tanya Paskova,et al.  Development and prospects of nitride materials and devices with nonpolar surfaces , 2008 .