Factor Models for High-Dimensional Tensor Time Series

Large tensor (multi-dimensional array) data are now routinely collected in a wide range of applications, due to modern data collection capabilities. Often such observations are taken over time, forming tensor time series. In this paper we present a factor model approach for analyzing high-dimensional dynamic tensor time series and multi-category dynamic transport networks. Two estimation procedures along with their theoretical properties and simulation results are presented. Two applications are used to illustrate the model and its interpretations.

[1]  M. Weisz Econometric Analysis Of Panel Data , 2016 .

[2]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[3]  Ming Yuan,et al.  On Polynomial Time Methods for Exact Low-Rank Tensor Completion , 2017, Found. Comput. Math..

[4]  N. Davies Multiple Time Series , 2005 .

[5]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[6]  Ming Yuan,et al.  Incoherent Tensor Norms and Their Applications in Higher Order Tensor Completion , 2016, IEEE Transactions on Information Theory.

[7]  B. Baltagi,et al.  Econometric Analysis of Panel Data , 2020, Springer Texts in Business and Economics.

[8]  G. C. Tiao,et al.  An introduction to multiple time series analysis. , 1993, Medical care.

[9]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1982 .

[10]  Jonathan Shi,et al.  Tensor principal component analysis via sum-of-square proofs , 2015, COLT.

[11]  Ming Yuan,et al.  On Tensor Completion via Nuclear Norm Minimization , 2014, Foundations of Computational Mathematics.

[12]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[13]  George E. P. Box,et al.  Identifying a Simplifying Structure in Time Series , 1987 .

[14]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[15]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[16]  Q. Yao,et al.  Modelling multiple time series via common factors , 2008 .

[17]  D. Mare,et al.  The Oxford Handbook of Economic Forecasting , 2015, J. Oper. Res. Soc..

[18]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[19]  Catherine Doz,et al.  A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering , 2007 .

[20]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data with R , 2020, Use R!.

[21]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[22]  Michael P. Clements,et al.  The Oxford handbook of economic forecasting , 2011 .

[23]  Arjan Durresi,et al.  A survey: Control plane scalability issues and approaches in Software-Defined Networking (SDN) , 2017, Comput. Networks.

[24]  Ji Zhu,et al.  On Consistency of Community Detection in Networks , 2011, ArXiv.

[25]  O. Linton,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF THE FAMA-FRENCH MODEL AND EXTENSIONS , 2012 .

[26]  Clifford Lam,et al.  Factor modeling for high-dimensional time series: inference for the number of factors , 2012, 1206.0613.

[27]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[28]  Daniel Peña,et al.  Nonstationary dynamic factor analysis , 2006 .

[29]  Jiashun Jin,et al.  Coauthorship and Citation Networks for Statisticians , 2014, ArXiv.

[30]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[31]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[32]  Ji Zhu,et al.  Consistency of community detection in networks under degree-corrected stochastic block models , 2011, 1110.3854.

[33]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[34]  Gregory Connor,et al.  Semiparametric Estimation of a Characteristic-Based Factor Model of Stock Returns , 2000 .

[35]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[36]  Jianqing Fan,et al.  PROJECTED PRINCIPAL COMPONENT ANALYSIS IN FACTOR MODELS. , 2014, Annals of statistics.

[37]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[38]  Klaus Nordhausen,et al.  Statistical Analysis of Network Data with R , 2015 .

[39]  Anru Zhang,et al.  Cross: Efficient Low-rank Tensor Completion , 2016, The Annals of Statistics.

[40]  Anima Anandkumar,et al.  Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates , 2014, ArXiv.

[41]  Jonathan R. Stroud,et al.  Dynamic models for spatiotemporal data , 2001 .

[42]  Eric R. Ziegel,et al.  Analysis of Financial Time Series , 2002, Technometrics.

[43]  Mark W. Woolrich,et al.  Fully Bayesian spatio-temporal modeling of FMRI data , 2004, IEEE Transactions on Medical Imaging.

[44]  Han Liu,et al.  Provable sparse tensor decomposition , 2015, 1502.01425.

[45]  Michael P. Clements,et al.  Dynamic Factor Models , 2011, Financial Econometrics.

[46]  Rong Chen,et al.  Modeling Dynamic Transport Network with Matrix Factor Models: an Application to International Trade Flow , 2019, Journal of Data Science.

[47]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[48]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[49]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[50]  W. Härdle,et al.  A Review of Nonparametric Time Series Analysis , 1997 .

[51]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[52]  Clifford Lam,et al.  Estimation of latent factors for high-dimensional time series , 2011 .

[53]  Helmut Lütkepohl,et al.  Introduction to multiple time series analysis , 1991 .

[54]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[55]  E. Airoldi,et al.  A natural experiment of social network formation and dynamics , 2015, Proceedings of the National Academy of Sciences.

[56]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[57]  Rong Chen,et al.  Factor models for matrix-valued high-dimensional time series , 2016, Journal of Econometrics.

[58]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[59]  John A. Sawyer,et al.  An econometric study of international trade flows , 1967 .

[60]  Eric P. Xing,et al.  Discrete Temporal Models of Social Networks , 2006, SNA@ICML.

[61]  Ankur Moitra,et al.  Noisy tensor completion via the sum-of-squares hierarchy , 2015, Mathematical Programming.

[62]  Rong Chen,et al.  Nonlinear Time Series Analysis , 2018, Wiley Series in Probability and Statistics.

[63]  J. Stock,et al.  Forecasting with Many Predictors , 2006 .

[64]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[65]  N. Wermuth,et al.  Nonlinear Time Series: Nonparametric and Parametric Methods , 2005 .

[66]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[67]  M. Hallin,et al.  Determining the Number of Factors in the General Dynamic Factor Model , 2007 .

[68]  J. Bai,et al.  Large Dimensional Factor Analysis , 2008 .

[69]  Brett W. Bader,et al.  The TOPHITS Model for Higher-Order Web Link Analysis∗ , 2006 .

[70]  Antonio Auffinger,et al.  Random Matrices and Complexity of Spin Glasses , 2010, 1003.1129.

[71]  Qiwei Yao,et al.  Principal component analysis for second-order stationary vector time series , 2014, The Annals of Statistics.

[72]  Kunpeng Li,et al.  STATISTICAL ANALYSIS OF FACTOR MODELS OF HIGH DIMENSION , 2012, 1205.6617.

[73]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[74]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[75]  N. Cressie,et al.  Spatial-temporal nonlinear filtering based on hierarchical statistical models , 2002 .

[76]  Charu C. Aggarwal,et al.  Evolutionary Network Analysis , 2014, ACM Comput. Surv..

[77]  Tom A. B. Snijders,et al.  Statistical Methods for Network Dynamics , 2006 .

[78]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[79]  Jianqing Fan,et al.  Robust Covariance Estimation for Approximate Factor Models. , 2016, Journal of econometrics.

[80]  W. D. Ray Spatial Time Series , 2008, Encyclopedia of GIS.

[81]  Sergio Firpo,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF , 2007 .

[82]  Gary Chamberlain,et al.  FUNDS, FACTORS, AND DIVERSIFICATION IN ARBITRAGE PRICING MODELS , 1983 .

[83]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[84]  Thomas J. Sargent,et al.  Business cycle modeling without pretending to have too much a priori economic theory , 1976 .

[85]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .