Numerical simulation for unsteady compressible Micropolar fluid flow

This paper reports the advancement of computational Micropolar fluid dynamics (CMFD) using the spectral difference (SD) method. The fundamentals, linear constitutive equations and generalized Stokes’ hypothesis for Micropolar fluid dynamics are briefly introduced. The additional degrees of freedom in MFD, gyration, can help to understand the coherent structures of vortices from the two-level energy transfer in the balance law of energy. The spectral difference (SD) method is proposed for solving unsteady compressible viscous Micropolar flow problems. The analytical and exact solution of compressible Micropolar Couette flow is solved and used to demonstrate the order of numerical accuracy of the SD method. As a numerical example, a 2D spectral difference solver is developed to simulate flow past a cylinder. The instantaneous gyration contours are plotted for the observation of vortex shedding behind the cylinder. A new physical phenomenon, the coupling effect, is discussed.

[1]  K. Zhu,et al.  Laminar flow of micropolar fluid in rectangular microchannels , 2006 .

[2]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[3]  Chunlei Liang,et al.  A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids , 2009 .

[4]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[5]  Chunlei Liang,et al.  Theory and simulation of micropolar fluid dynamics , 2010 .

[6]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[7]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[9]  Chunlei Liang,et al.  Spectral difference method for compressible flow on unstructured grids with mixed elements , 2009, J. Comput. Phys..

[10]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[11]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[12]  A. Eringen,et al.  THEORY OF MICROPOLAR FLUIDS , 1966 .

[13]  James D. Lee,et al.  Constitutive equations of Micropolar electromagnetic fluids , 2011 .

[14]  B. D. Todd,et al.  Molecular spin in nano-confined fluidic flows , 2009 .

[15]  Zhi J. Wang,et al.  Extension of the spectral volume method to high-order boundary representation , 2006 .

[16]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[17]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[18]  Zhi Jian Wang,et al.  LDG2: A Variant of the LDG Flux Formulation for the Spectral Volume Method , 2011, J. Sci. Comput..

[19]  F. Mahfouz Laminar Forced Convection From a Circular Cylinder Placed in a Micropolar Fluid , 2007 .

[20]  Charles H. K. Williamson,et al.  A SERIES IN 1/√Re TO REPRESENT THE STROUHAL–REYNOLDS NUMBER RELATIONSHIP OF THE CYLINDER WAKE , 1998 .

[21]  Ian Papautsky,et al.  Laminar fluid behavior in microchannels using micropolar fluid theory , 1999 .

[22]  A. Eringen,et al.  Microcontinuum Field Theories II Fluent Media , 1999 .

[23]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[24]  Chris Lacor,et al.  On the Stability and Accuracy of the Spectral Difference Method , 2008, J. Sci. Comput..