The ancient heritage of water ice in the solar system

Nature or nurture for solar system ices? We know that life's favorite molecule, water, exists throughout the solar system. What we don't know is whether present water levels reflect the chemical conditions of our parent nebula or whether they result from later reprocessing in the young system. The levels of deuterium and hydrogen in solar system water ice offer a tracer for chemical history, and Cleeves et al. model the processes at play. The analysis suggests that all nascent planetary systems may have the same water resources that we did. Science, this issue p. 1590 A model tracing the path of deuterium in the solar system shows that its abundance hails from the parent interstellar medium. Identifying the source of Earth’s water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk’s deuterated water formation and its viability as the sole source for the solar system’s water. This finding implies that, if the solar system’s formation was typical, abundant interstellar ices are available to all nascent planetary systems.

[1]  E. Chapillon,et al.  A deep search for H2D+ in protoplanetary disks - Perspectives for ALMA , 2011, 1106.5884.

[2]  T. Owen,et al.  A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). , 1998, Science.

[3]  C. Dullemond,et al.  The chemical history of molecules in circumstellar disks - I. Ices , 2009, 0901.1313.

[4]  J. Greenberg,et al.  Morphological Structure and Chemical Composition of Cometary Nuclei and Dust , 1999 .

[5]  S. Sandford,et al.  Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula , 2012, Science.

[6]  F. Adams The Birth Environment of the Solar System , 2010, 1001.5444.

[7]  Water in the Solar System , 2008 .

[8]  I. Kamp,et al.  Warm gas phase chemistry as possible origin of high HDO/H2O ratios in hot and dense gases: application to inner protoplanetary discs , 2009, 0912.0701.

[9]  E. Herbst,et al.  Deuterium Fractionation in Protoplanetary Disks , 1999 .

[10]  E. Dishoeck,et al.  Subarcsecond resolution observations of warm water toward three deeply embedded low-mass protostars , 2012, 1203.4969.

[11]  C. Vastel,et al.  A study of deuterated water in the low-mass protostar IRAS 16293-2422 , 2012, 1201.1785.

[12]  E. Herbst,et al.  Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules , 1992 .

[13]  Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach , 2002, astro-ph/0202368.

[14]  G. Herczeg,et al.  The warm gas atmosphere of the HD 100546 disk seen by Herschel - Evidence of a gas-rich, carbon-poor atmosphere? , 2012, 1201.4860.

[15]  H Germany,et al.  CHEMODYNAMICAL DEUTERIUM FRACTIONATION IN THE EARLY SOLAR NEBULA: THE ORIGIN OF WATER ON EARTH AND IN ASTEROIDS AND COMETS , 2014, 1401.6035.

[16]  L. Observatory,et al.  Chemical History of Molecules in Circumstellar Disks , 2011, Proceedings of the International Astronomical Union.

[17]  Z. Haiman,et al.  Suppression of HD cooling in protogalactic gas clouds by Lyman–Werner radiation , 2010, 1009.1087.

[18]  Alwyn Wootten,et al.  Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets☆ , 1998 .

[19]  D. Gautier,et al.  A Two-dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets , 2001 .

[20]  S. Schlemmer,et al.  H3(+) + H2 isotopic system at low temperatures: microcanonical model and experimental study. , 2009, The Journal of chemical physics.

[21]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[22]  David Bazell,et al.  Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements , 2013, Science.

[23]  Duncan Carr Agnew,et al.  SPOTL: Some Programs for Ocean-Tide Loading , 2012 .

[24]  M. Min,et al.  Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation , 2009, 0903.1231.

[25]  T. Umebayashi,et al.  EFFECTS OF DUST GROWTH AND SETTLING ON THE IONIZATION BY RADIONUCLIDES. I. FORMULATION AND RESULTS IN A QUIESCENT STATE OF PROTOPLANETARY DISKS , 2013 .

[26]  V. Wakelam,et al.  WATER IN PROTOPLANETARY DISKS: DEUTERATION AND TURBULENT MIXING , 2013, 1310.3342.

[27]  N. Calvet,et al.  CHEMISTRY OF A PROTOPLANETARY DISK WITH GRAIN SETTLING AND Lyα RADIATION , 2010, 1011.0446.

[28]  H. Fraser,et al.  Competition between CO and N2 Desorption from Interstellar Ices , 2005 .

[29]  J. Geiss,et al.  Isotopic Composition of H, HE and NE in the Protosolar Cloud , 2003 .

[30]  E. Dishoeck,et al.  The deuterium fractionation of water on solar-system scales in deeply-embedded low-mass protostars , 2014, 1402.1398.

[31]  R. Garrod,et al.  ON THE FORMATION OF CO2 AND OTHER INTERSTELLAR ICES , 2011, 1106.0540.

[32]  F. Ciesla THE PHASES OF WATER ICE IN THE SOLAR NEBULA , 2014, 1402.5333.

[33]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[34]  G. Orton,et al.  The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations , 2013, 1301.5781.

[35]  K. Willacy,et al.  DEUTERIUM CHEMISTRY IN PROTOPLANETARY DISKS. II. THE INNER 30 AU , 2009, 0908.1114.

[36]  E. Bergin,et al.  PHOTOELECTRIC CROSS-SECTIONS OF GAS AND DUST IN PROTOPLANETARY DISKS , 2011, 1107.3515.

[37]  T. Nakano,et al.  EFFECTS OF RADIONUCLIDES ON THE IONIZATION STATE OF PROTOPLANETARY DISKS AND DENSE CLOUD CORES , 2008 .

[38]  E. Bergin,et al.  THE PROPAGATION OF Lyα IN EVOLVING PROTOPLANETARY DISKS , 2011, 1107.3514.

[39]  François Robert,et al.  The Solar System d/h Ratio: Observations and Theories , 2000 .

[40]  A. Tielens,et al.  Search for solid HDO in low-mass protostars , 2003, astro-ph/0309401.

[41]  John H. Jones,et al.  Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites , 2012 .

[42]  Mark R. Anderson,et al.  A laboratory survey of the thermal desorption of astrophysically relevant molecules , 2004 .

[43]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[44]  Eric Herbst,et al.  DEUTERIUM FRACTIONATION IN DENSE INTERSTELLAR CLOUDS , 1989 .

[45]  T. Millar,et al.  The chemistry of multiply deuterated species in cold, dense interstellar cores , 2004 .

[46]  M. W. Buie,et al.  A METHOD TO CONSTRAIN THE SIZE OF THE PROTOSOLAR NEBULA , 2012, 1202.2343.

[47]  Alexander G. G. M. Tielens,et al.  Model calculations of the molecular composition of interstellar grain mantles , 1982 .

[48]  E. Dartois,et al.  Revisiting the solid HDO/H2O abundances , 2003 .

[49]  E. Bergin,et al.  EXCLUSION OF COSMIC RAYS IN PROTOPLANETARY DISKS: STELLAR AND MAGNETIC EFFECTS , 2013, 1306.0902.

[50]  M. Collings,et al.  Laboratory studies of the interaction of carbon monoxide with water ice , 2003 .

[51]  Ian W. M. Smith,et al.  Rapid neutral–neutral reactions at low temperatures: a new network and first results for TMC‐1 , 2004 .

[52]  H. Roberts,et al.  Modelling of deuterium chemistry and its application to molecular clouds , 2000 .

[53]  F. Ciesla,et al.  The D/H ratio of water in the solar nebula during its formation and evolution , 2013 .

[54]  P. Ehrenfreund,et al.  Ultraviolet processing of interstellar ice analogs. I. Pure ices. , 1996 .

[55]  K. Kohno,et al.  DENSE CLUMPS IN GIANT MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD: DENSITY AND TEMPERATURE DERIVED FROM 13CO(J = 3–2) OBSERVATIONS , 2010, 1012.5037.

[56]  Synthetic infrared images and spectral energy distributions of a young low-mass stellar cluster , 2004, astro-ph/0403582.

[57]  T. Harries Synthetic line profiles of rotationally distorted hot-star winds , 2000 .

[58]  Three-dimensional dust radiative-transfer models: the Pinwheel Nebula of WR 104 , 2004, astro-ph/0401574.

[59]  E. Bergin,et al.  RADIONUCLIDE IONIZATION IN PROTOPLANETARY DISKS: CALCULATIONS OF DECAY PRODUCT RADIATIVE TRANSFER , 2013, 1309.0018.

[60]  F. Robert,et al.  Interstellar water in meteorites? , 1995, Geochimica et cosmochimica acta.

[61]  A. Tielens Surface chemistry of deuterated molecules , 1983 .

[62]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[63]  I. Franchi,et al.  The origin of water in the primitive Moon as revealed by the lunar highlands samples , 2014 .

[64]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[65]  Paul F. Goldsmith,et al.  Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption , 1995 .

[66]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[67]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.