Möbius-Hückel topology switching in an expanded porphyrin cation radical as studied by EPR and ENDOR spectroscopy.

The symmetry of the arrangement of objects has fascinated philosophers, artists and scientists for a long time, and still does. Symmetries often exist in nature, but are also created artificially, for instance by chemical synthesis of novel molecules and materials. The one-sided, non-orientable Möbius band topology is a paradigm of such a symmetry-based fascination. In the early 1960s, in synthetic organic chemistry the interest in molecules with Möbius symmetry was greatly stimulated by a short paper by Edgar Heilbronner. He predicted that sufficiently large [n]annulenes with a closed-shell electron configuration of 4n π-electrons should allow for sufficient π-overlap stabilization to be synthesizable by twisting them with a 180° phase change into the Möbius symmetry of their hydrocarbon skeleton. In 2007, the group of Lechosław Latos-Grażyński succeeded in synthesizing the compound di-p-benzi[28]hexa-phyrin(1.1.1.1.1.1), compound 1, which can dynamically switch between Hückel and Möbius conjugation depending, in a complex manner, on the polarity and temperature of the surrounding solvent. This discovery of "topology switching" between the two-sided (Hückel) and one-sided (Möbius) molecular state with closed-shell electronic configuration was based primarily on the results of NMR spectroscopy and DFT calculations. The present EPR and ENDOR work on the radical cation state of compound 1 is the first study of a ground-state open-shell system which exhibits a Hückel-Möbius topology switch that is controlled by temperature, like in the case of the closed-shell precursor. The unpaired electron interacting with magnetic nuclei in the molecule is used as a sensitive probe for the electronic structure and its symmetry properties. For a Hückel conformer with its higher symmetry, we expect - and observe - fewer ENDOR lines than for a Möbius conformer. The ENDOR results are supplemented by and in accordance with theoretical calculations based on density functional theory at the ORCA level.

[1]  Jong Min Lim,et al.  Thermal fusion reactions of meso-(3-thienyl) groups in [26]hexaphyrins to produce Möbius aromatic molecules. , 2009, Angewandte Chemie.

[2]  C. Isborn,et al.  Aromaticity with a twist: Möbius [4n]annulenes. , 2002, Organic letters.

[3]  W. Lubitz,et al.  Radicals in solution studied by endor and triple resonance spectroscopy , 1982 .

[4]  E. Heilbronner,et al.  Hűckel molecular orbitals of Mőbius-type conformations of annulenes , 1964 .

[5]  R. Herges,et al.  Möbius molecules with twists and writhes. , 2013, Chemical communications.

[6]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[7]  Jong Min Lim,et al.  Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. , 2010, Chemical Society reviews.

[8]  W. Lubitz,et al.  EPR, ENDOR, and TRIPLE resonance studies of modified bacteriochlorophyll cation radicals , 1994 .

[9]  H. Rzepa Möbius aromaticity and delocalization. , 2005, Chemical reviews.

[10]  M. Stępień,et al.  Tetraphenylbenziporphyrin--a ligand for organometallic chemistry. , 2001, Chemistry.

[11]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[12]  Jong Min Lim,et al.  Möbius antiaromatic bisphosphorus complexes of [30]hexaphyrins. , 2010, Angewandte Chemie.

[13]  A. Osuka,et al.  Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.

[14]  C. Palivan,et al.  Ion pairing in radical cations: the example of 9,9′-bianthryl , 2001 .

[15]  Jong Min Lim,et al.  Protonated [4n]pi and [4n+2]pi octaphyrins choose their Möbius/Hückel aromatic topology. , 2010, Journal of the American Chemical Society.

[16]  G. Scheibe,et al.  Grundzüge der Theorie ungesättigter und aromatischer Verbindungen. Von Prof. Dr. E. Hückel. Verlag Chemie, G. m. b. H., Berlin 1938. Preis br. RM. 8,– , 1938 .

[17]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[18]  M. Wasielewski,et al.  Temperature-dependent conformational change of meso-hexakis(pentafluorophenyl) [28]Hexaphyrins(1.1.1.1.1.1) into Möbius structures. , 2009, The journal of physical chemistry. A.

[19]  C. Näther,et al.  Synthesis and properties of the first Möbius annulenes. , 2006, Chemistry.

[20]  Byung Sun Lee,et al.  A Möbius antiaromatic complex as a kinetically controlled product in phosphorus insertion to a [32]heptaphyrin. , 2012, Angewandte Chemie.

[21]  M. Stępień,et al.  Steric control in the synthesis of p-benziporphyrins. Formation of a doubly N-confused benzihexaphyrin macrocycle. , 2009, Organic letters.

[22]  A. Osuka,et al.  Möbius aromaticity and antiaromaticity in expanded porphyrins. , 2009, Nature chemistry.

[23]  M. Stępień,et al.  Expanded porphyrin with a split personality: a Hückel-Möbius aromaticity switch. , 2007, Angewandte Chemie.

[24]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[25]  Howard E. Zimmerman,et al.  On Molecular Orbital Correlation Diagrams, the Occurrence of Möbius Systems in Cyclization Reactions, and Factors Controlling Ground- and Excited-State Reactions. I , 1966 .

[26]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[27]  Rainer Herges,et al.  Topology in chemistry: designing Möbius molecules. , 2006, Chemical reviews.

[28]  N. Aratani,et al.  Möbius aromatic [28]hexaphyrin phosphonium adducts. , 2011, Chemistry.

[29]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[30]  L. Szterenberg,et al.  A facile palladium-mediated contraction of benzene to cyclopentadiene: transformations of palladium(II) p-benziporphyrin. , 2011, Angewandte Chemie.

[31]  Xiang Zhang,et al.  Optical Möbius symmetry in metamaterials. , 2010, Physical review letters.

[32]  A. Osuka,et al.  Expanded porphyrins and aromaticity. , 2011, Chemical communications.

[33]  M. Huber,et al.  ENDOR studies of π-electron delocalization in covalently linked porphyrin dimers. Model systems for the primary donor in photosynthesis? , 1990 .

[34]  R. Herges,et al.  Synthesis of a Möbius aromatic hydrocarbon , 2003, Nature.

[35]  J. Sessler,et al.  Expanded, Contracted & Isomeric Porphyrins , 1997 .

[36]  M. Stępień,et al.  Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. , 2011, Angewandte Chemie.

[37]  A. Osuka,et al.  Multiple conformational changes of beta-tetraphenyl meso-hexakis(pentafluorophenyl) substituted [26] and [28]hexaphyrins(1.1.1.1.1.1). , 2009, Chemical communications.

[38]  Dongho Kim,et al.  Solvent- and temperature-dependent conformational changes between Hückel antiaromatic and Möbius aromatic species in meso-trifluoromethyl substituted [28]hexaphyrins. , 2011, The journal of physical chemistry. B.

[39]  R. Herges,et al.  The [13]annulene cation is a stable Möbius annulene cation. , 2010, Organic letters.

[40]  E. Hückel,et al.  Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .

[41]  M. Stępień,et al.  Hückel and Möbius expanded para-benziporphyrins: synthesis and aromaticity switching. , 2014, Chemistry.

[42]  A. Osuka,et al.  Metal complexes of chiral Möbius aromatic [28]hexaphyrin(1.1.1.1.1.1): enantiomeric separation, absolute stereochemistry, and asymmetric synthesis. , 2010, Angewandte Chemie.

[43]  M. Stępień,et al.  Three-level topology switching in a molecular Möbius band. , 2010, Journal of the American Chemical Society.

[44]  Jong Min Lim,et al.  Protonation-triggered conformational changes to möbius aromatic [32]heptaphyrins(1.1.1.1.1.1.1). , 2008, Angewandte Chemie.

[45]  Jong Kang Park,et al.  Möbius aromaticity in N-fused [24]pentaphyrin upon Rh(I) metalation. , 2008, Journal of the American Chemical Society.

[46]  A. Osuka,et al.  Redox-induced palladium migrations that allow reversible topological changes between palladium(II) complexes of Möbius aromatic [28]hexaphyrin and Hückel aromatic [26]hexaphyrin. , 2010, Angewandte Chemie.

[47]  Alan Carrington,et al.  Introduction to Magnetic Resonance , 1967 .

[48]  N. Atherton,et al.  Principles of electron spin resonance , 1993 .

[49]  E. Breitmaier,et al.  Benziporphyrin, a Benzene‐Containing, Nonaromatic Porphyrin Analogue , 1994 .

[50]  S. Grimme,et al.  Is the [9]annulene cation a Möbius annulene? , 2009, Angewandte Chemie.

[51]  E. Hückel,et al.  Quanstentheoretische Beiträge zum Benzolproblem , 1931 .

[52]  A. Osuka,et al.  Regioselective palladation of a Möbius aromatic [28]hexaphyrin(1.1.1.1.1.1) Pd(II) complex. , 2012, Chemistry.

[53]  M. Stępień,et al.  Benziporphyrins: exploring arene chemistry in a macrocyclic environment. , 2005, Accounts of chemical research.

[54]  Z. Ciunik,et al.  Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. , 2008, Journal of the American Chemical Society.

[55]  A. Osuka,et al.  Singly N-fused Möbius aromatic [28]hexaphyrins(1.1.1.1.1.1). , 2010, The Journal of organic chemistry.

[56]  E. Hückel,et al.  Grundzüge der Theorie ungesättigter und aromatischer Verbindungen , 1937, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[57]  W. Lubitz,et al.  An Improved TM110 ENDOR Cavity for the Investigation of Transition Metal Complexes , 1994 .

[58]  Jong Min Lim,et al.  A stable organic radical delocalized on a highly twisted pi system formed upon palladium metalation of a Möbius aromatic hexaphyrin. , 2010, Angewandte Chemie.

[59]  M. Stępień,et al.  Tetraphenyl-p-benziporphyrin: a carbaporphyrinoid with two linked carbon atoms in the coordination core. , 2002, Journal of the American Chemical Society.

[60]  Frank Neese,et al.  The ORCA program system , 2012 .

[61]  Jong Min Lim,et al.  Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1.1.1.1.1). , 2008, Journal of the American Chemical Society.

[62]  Jong Min Lim,et al.  Facile formation of a benzopyrane-fused [28]hexaphyrin that exhibits distinct Möbius aromaticity. , 2009, Journal of the American Chemical Society.

[63]  Jong Kang Park,et al.  Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. , 2008, Angewandte Chemie.