Interval-censored data with misclassification: a Bayesian approach

Survival data involving silent events are often subject to interval censoring (the event is known to occur within a time interval) and classification errors if a test with no perfect sensitivity an...

[1]  J. Hughes,et al.  Discrete Proportional Hazards Models for Mismeasured Outcomes , 2003, Biometrics.

[2]  Andrew C. Titman,et al.  Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification , 2016, Statistics and Computing.

[3]  S. Lagakos,et al.  Estimation of the Timing of Perinatal Transmission of HIV , 2001, Biometrics.

[4]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[5]  L. Dodd,et al.  measurements with and without diagnostic error Analysis of progression-free survival data using a discrete time survival model that incorporates , 2010 .

[6]  S. Snapinn,et al.  Survival analysis with uncertain endpoints. , 1998, Biometrics.

[7]  Emmanuel Lesaffre,et al.  A Bayesian ordinal logistic regression model to correct for interobserver measurement error in a geographical oral health study , 2005 .

[8]  A. Gelfand,et al.  Modelling the cumulative risk for a false-positive under repeated screening events. , 2000, Statistics in medicine.

[9]  Dean M. Young,et al.  Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification , 2006, Comput. Stat. Data Anal..

[10]  E. Colosimo,et al.  Survival Weibull regression model for mismeasured outcomes , 2018 .

[11]  Amalia S Magaret,et al.  Incorporating validation subsets into discrete proportional hazards models for mismeasured outcomes , 2008, Statistics in medicine.

[12]  Nicholas P. Jewell,et al.  Misclassification of current status data , 2010, Lifetime data analysis.

[13]  C. Wen,et al.  Semiparametric analysis of incomplete current status outcome data under transformation models , 2014, Biometrics.

[14]  Li Li,et al.  Marginal Bayesian Semiparametric Modeling of Mismeasured Multivariate Interval-Censored Data , 2018, Journal of the American Statistical Association.

[15]  Nicola Torelli,et al.  The effect of classification errors in survival data analysis , 2002 .

[16]  S. Xie,et al.  Assessing treatment effects with surrogate survival outcomes using an internal validation subsample , 2015, Clinical trials.

[17]  Emmanuel Lesaffre,et al.  Modeling of Multivariate Monotone Disease Processes in the Presence of Misclassification , 2012 .

[18]  B. Richardson,et al.  Product limit estimation for infectious disease data when the diagnostic test for the outcome is measured with uncertainty. , 2000, Biostatistics.

[19]  R. Balasubramanian,et al.  SEMIPARAMETRIC TIME TO EVENT MODELS IN THE PRESENCE OF ERROR-PRONE, SELF-REPORTED OUTCOMES-WITH APPLICATION TO THE WOMEN'S HEALTH INITIATIVE. , 2015, The annals of applied statistics.

[20]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[21]  E. Brown,et al.  Bayesian Estimation of the Time‐Varying Sensitivity of a Diagnostic Test with Application to Mother‐to‐Child Transmission of HIV , 2010, Biometrics.

[22]  B. Richardson,et al.  Hormonal contraception, sexually transmitted diseases, and risk of heterosexual transmission of human immunodeficiency virus type 1. , 1998, The Journal of infectious diseases.

[23]  Margaret S. Pepe,et al.  Inference using surrogate outcome data and a validation sample , 1992 .

[24]  Klaus Langohr,et al.  Tutorial on methods for interval-censored data and their implementation in R , 2009 .

[25]  Raji Balasubramanian,et al.  Estimation of a failure time distribution based on imperfect diagnostic tests , 2003 .

[26]  Jarcy Zee,et al.  Nonparametric discrete survival function estimation with uncertain endpoints using an internal validation subsample , 2015, Biometrics.

[27]  J. Hausman,et al.  Misclassification of the dependent variable in a discrete-response setting , 1998 .