A Proper Generalized Decomposition (PGD) approach to crack propagation in brittle materials: with application to random field material properties

Understanding the failure of brittle heterogeneous materials is essential in many applications. Heterogeneities in material properties are frequently modeled through random fields, which typically induces the need to solve finite element problems for a large number of realizations. In this context, we make use of reduced order modeling to solve these problems at an affordable computational cost. This paper proposes a reduced order modeling framework to predict crack propagation in brittle materials with random heterogeneities. The framework is based on a combination of the Proper Generalized Decomposition (PGD) method with Griffith’s global energy criterion. The PGD framework provides an explicit parametric solution for the physical response of the system. We illustrate that a non-intrusive sampling-based technique can be applied as a post-processing operation on the explicit solution provided by PGD. We first validate the framework using a global energy approach on a deterministic two-dimensional linear elastic fracture mechanics benchmark. Subsequently, we apply the reduced order modeling approach to a stochastic fracture propagation problem.

[1]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[2]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[3]  Pedro Díez,et al.  Proper generalized decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems , 2017 .

[4]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[5]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[6]  Sergio Zlotnik,et al.  Algebraic PGD for tensor separation and compression: An algorithmic approach , 2018, Comptes Rendus Mécanique.

[7]  Mauro Naghettini,et al.  Elementary Probability Theory , 2017 .

[8]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[9]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[10]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[11]  D. Rooke,et al.  The compendium of stress intensity factors , 1978, International Journal of Fracture.

[12]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[13]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[14]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[15]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[16]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[17]  Antonio Huerta,et al.  Generalized parametric solutions in Stokes flow , 2017, 1704.02817.

[18]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[19]  Steen Krenk,et al.  Stochastic Finite Element Methods , 2004 .

[20]  Pedro Díez,et al.  Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications , 2015 .

[21]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[22]  F. Chinesta,et al.  On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems , 2010 .

[23]  Christian Soize,et al.  Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity , 2012 .

[24]  Emmanuel Roubin,et al.  Reduced order modeling strategies for computational multiscale fracture , 2017 .

[25]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[26]  Pedro Díez,et al.  Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) , 2018 .

[27]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[28]  Francisco Chinesta,et al.  A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity , 2016, Archives of Computational Methods in Engineering.

[29]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[30]  Pedro Díez,et al.  Effect of the separated approximation of input data in the accuracy of the resulting PGD solution , 2015, Adv. Model. Simul. Eng. Sci..

[31]  D. M. Tracey,et al.  Computational fracture mechanics , 1973 .