Multiresolution Dynamic Mode Decomposition

We demonstrate that the integration of the recently developed dynamic mode decomposition (DMD) with a multiresolution analysis allows for a decomposition method capable of robustly separating complex systems into a hierarchy of multiresolution time-scale components. A one-level separation allows for background (low-rank) and foreground (sparse) separation of dynamical data, or robust principal component analysis. The multiresolution DMD (mrDMD) is capable of characterizing nonlinear dynamical systems in an equation-free manner by recursively decomposing the state of the system into low-rank terms whose temporal coefficients in time are known. DMD modes with temporal frequencies near the origin (zero-modes) are interpreted as background (low-rank) portions of the given dynamics, and the terms with temporal frequencies bounded away from the origin are their sparse counterparts. The mrDMD method is demonstrated on several examples involving multiscale dynamical data, showing excellent decomposition results, ...

[1]  Matthew O. Williams,et al.  A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.

[2]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[3]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[4]  Steven L. Brunton,et al.  Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems , 2013, SIAM J. Appl. Dyn. Syst..

[5]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[7]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[8]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[9]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[10]  Clarence W. Rowley,et al.  Spectral analysis of fluid flows using sub-Nyquist-rate PIV data , 2014, Experiments in Fluids.

[11]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[12]  J. Kutz,et al.  Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements , 2013 .

[13]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[14]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[15]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[16]  J. Nathan Kutz,et al.  Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data , 2013 .

[17]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[18]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[19]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[20]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[21]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[22]  Steven L. Brunton,et al.  Compressive sampling and dynamic mode decomposition , 2013, 1312.5186.

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[25]  J. Marsden,et al.  Reconstruction equations and the Karhunen—Loéve expansion for systems with symmetry , 2000 .

[26]  Gary Froyland,et al.  A Computational Method to Extract Macroscopic Variables and Their Dynamics in Multiscale Systems , 2013, SIAM J. Appl. Dyn. Syst..

[27]  Steven L. Brunton,et al.  Exploiting sparsity and equation-free architectures in complex systems , 2014 .

[28]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[29]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[30]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.