Effects of single vacancy defect position on the stability of carbon nanotubes

In this paper, the buckling behavior of fixed–fixed, both single- and multi- wall carbon nanotubes (CNTs) under axial compressive loads, are studied using analytical continuum theory and molecular dynamics (MD). An approach based on the tethering of atoms (applying a spring force), is used to apply the boundary conditions and extract the reaction forces during the MD simulation. The effects of the vacancy defect position on the CNT critical buckling load are studied at room temperature and at low temperature (1 K). It is concluded that the defects at the ends of the CNT and close to the middle of the CNT significantly reduce the critical buckling load and strain of CNTs at 1 K. At room temperature the influence of vacancy defects on the critical buckling load and strain appears to be small. The MD simulation results can prove to be useful for developing more accurate continuum descriptions of the CNT mechanics in future research.

[1]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[2]  Y. Y. Zhang,et al.  Buckling of carbon nanotubes at high temperatures , 2009, Nanotechnology.

[3]  R. Naghdabadi,et al.  Stability analysis of carbon nanotubes under electric fields and compressive loading , 2008 .

[4]  K. Kaski,et al.  Mechanical properties of carbon nanotubes with vacancies and related defects , 2004 .

[5]  James D. Meindl,et al.  Carbon nanotube interconnects , 2007, ISPD '07.

[6]  Hamed Sadeghian,et al.  A numerical experimental approach for characterizing the elastic properties of thin films: application of nanocantilevers , 2011 .

[7]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[8]  P. Ajayan,et al.  Multifunctional composites using reinforced laminae with carbon-nanotube forests , 2006, Nature materials.

[9]  Patrick J. French,et al.  Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability , 2009 .

[10]  S. Mallapragada,et al.  Molecular dynamics studies of plastic deformation during silicon nanoindentation , 2001 .

[11]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[12]  Y. Chiu,et al.  Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation , 2010 .

[13]  Alex K Zettl,et al.  Sustained mechanical self-oscillations in carbon nanotubes. , 2010, Nano letters.

[14]  H. Craighead,et al.  Young's modulus and density measurements of thin atomic layer deposited films using resonant nanomechanics , 2010 .

[15]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[16]  Gustavo E. Scuseria,et al.  Half-metallic zigzag carbon nanotube dots. , 2008, ACS nano.

[17]  K. Liew,et al.  Inelastic buckling of carbon nanotubes , 2007 .

[18]  Jeffrey Bokor,et al.  Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology , 2004 .

[19]  Simpson,et al.  First principles simulations of silicon nanoindentation. , 1995, Physical review letters.

[20]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[21]  T. Fang,et al.  Experimental and numerical investigation into buckling instability of carbon nanotube probes under nanoindentation , 2007 .

[22]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[23]  Zesheng Li,et al.  Molecular dynamics simulation of polyethylene on single wall carbon nanotube. , 2007, The Journal of chemical physics.

[24]  N. Wilson,et al.  Carbon nanotube tips for atomic force microscopy. , 2009, Nature nanotechnology.

[25]  Naoki Yokoyama,et al.  Carbon nanotube via interconnect technologies: size‐classified catalyst nanoparticles and low‐resistance ohmic contact formation , 2006 .

[26]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[27]  M. Meyyappan,et al.  Large-Scale Fabrication of Carbon Nanotube Probe Tips for Atomic Force Microscopy Critical Dimension Imaging Applications , 2004 .

[28]  James D. Meindl,et al.  Carbon nanotube interconnects , 2007, ISPD.

[29]  J. Reddy,et al.  Molecular dynamics analysis on buckling of defective carbon nanotubes , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[31]  M. Shariati,et al.  Investigation of vacancy defects effects on the buckling behavior of SWCNTs via a structural mechanics approach , 2009 .

[32]  Nan Yao,et al.  Young’s modulus of single-walled carbon nanotubes , 1998 .