Piecewise Regular Meshes: Construction and Compression

We present an algorithm which splits a 3D surface into reliefs, relatively fiat regions that have smooth boundaries. The surface is then resampled in a regular manner within each of the reliefs. As a result, we obtain a piecewise regular mesh (PRM) having a regular structure on large regions. Experimental results show that we are able to approximate the input surface with the mean square error of about 0.01- 0.02% of the diameter of the bounding box without increasing the number of vertices. We introduce a compression scheme tailored to work with our remeshed models and show that it is able to compress them losslessly (after quantizing the vertex locations) without significantly increasing the approximation error using about 4 bits per vertex of the resampled model.

[1]  Jarek Rossignac,et al.  Edgebreaker compression and Wrap&Zip decoding of the connectivity of triangle meshes , 1999 .

[2]  Jarek Rossignac,et al.  An Edgebreaker-based efficient compression scheme for regular meshes , 2001, Comput. Geom..

[3]  Renato Pajarola,et al.  SQUEEZE: fast and progressive decompression of triangle meshes , 2000, Proceedings Computer Graphics International 2000.

[4]  Jarek Rossignac,et al.  Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker , 1999, Comput. Geom..

[5]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[6]  Martin Isenburg,et al.  Spirale Reversi: Reverse Decoding of the Edgebreaker Encoding , 1999, CCCG.

[7]  Bernard Chazelle,et al.  Strategies for polyhedral surface decomposition: an experimental study , 1995, SCG '95.

[8]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[9]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[10]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[11]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[12]  Anne Verroust-Blondet,et al.  Level set diagrams of polyhedral objects , 1999, SMA '99.

[13]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[14]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[15]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[16]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[17]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[18]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[19]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[20]  Markus H. Gross,et al.  Spectral processing of point-sampled geometry , 2001, SIGGRAPH.

[21]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[22]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[23]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[24]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[25]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[26]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[27]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[28]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[29]  Michael Schindler,et al.  A fast renormalisation for arithmetic coding , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[30]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[31]  Pierre Alliez,et al.  Progressive compression for lossless transmission of triangle meshes , 2001, SIGGRAPH.

[32]  TurkGreg Re-tiling polygonal surfaces , 1992 .

[33]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.