On the algorithmic complexity of coloring simple hypergraphs and steiner triple systems
暂无分享,去创建一个
[1] Christine Treash. The completion of finite incomplete Steiner triple systems with applications to loop theory , 1971 .
[2] Allan B. Cruse,et al. On Embedding Incomplete Symmetric Latin Squares , 1974, J. Comb. Theory, Ser. A.
[3] Robert W. Quackenbush. Near vector spaces over GF(q) and (v,q+1,1)-BIBD's , 1975 .
[4] Bernhard Ganter,et al. Endliche Vervollständigung endlicher partieller Steinerscher Systeme , 1971 .
[5] Vojtech Rödl,et al. Coloring Block Designs is NP-Complete , 1982 .
[6] C. C. Lindner. A Survey of Embedding Theorems for Steiner Systems , 1980 .
[7] Charles C. Lindner. A Partial Steiner Triple System of Order n Can Be Embedded in a Steiner Triple System of Order 6n + 3 , 1975, J. Comb. Theory, Ser. A.
[8] Vojtech Rödl,et al. Colouring steiner quadruple systems , 1982, Discret. Appl. Math..
[9] David S. Johnson,et al. The Complexity of Near-Optimal Graph Coloring , 1976, J. ACM.
[10] Vojtech Rödl,et al. Coloring Steiner Triple Systems , 1982 .
[11] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[12] Bernhard Ganter. Finite partial quadruple systems can be finitely embedded , 1974, Discret. Math..
[13] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[14] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .