On the algorithmic complexity of coloring simple hypergraphs and steiner triple systems

In this paper we establish that decidingt-colorability for a simplek-graph whent≧3,k≧3 is NP-complete. Next, we establish that if there is a polynomial time algorithm for finding the chromatic number of a Steiner Triple system then there exists a polynomial time “approximation” algorithm for the chromatic number of simple 3-graphs. Finally, we show that the existence of such an approximation algorithm would imply that P=NP.