Visual query suggestion

Query suggestion is an effective approach to bridge the Intention Gap between the users' search intents and queries. Most existing search engines are able to automatically suggest a list of textual query terms based on users' current query input, which can be called Textual Query Suggestion. This article proposes a new query suggestion scheme named Visual Query Suggestion (VQS) which is dedicated to image search. VQS provides a more effective query interface to help users to precisely express their search intents by joint text and image suggestions. When a user submits a textual query, VQS first provides a list of suggestions, each containing a keyword and a collection of representative images in a dropdown menu. Once the user selects one of the suggestions, the corresponding keyword will be added to complement the initial query as the new textual query, while the image collection will be used as the visual query to further represent the search intent. VQS then performs image search based on the new textual query using text search techniques, as well as content-based visual retrieval to refine the search results by using the corresponding images as query examples. We compare VQS against three popular image search engines, and show that VQS outperforms these engines in terms of both the quality of query suggestion and the search performance.

[1]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[2]  Ji-Rong Wen,et al.  Clustering user queries of a search engine , 2001, WWW '01.

[3]  Doug Beeferman,et al.  Agglomerative clustering of a search engine query log , 2000, KDD '00.

[4]  Meng Wang,et al.  Visual query suggestion , 2009, ACM Multimedia.

[5]  Benjamin Rey,et al.  Generating query substitutions , 2006, WWW '06.

[6]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Wei-Ying Ma,et al.  Improving pseudo-relevance feedback in web information retrieval using web page segmentation , 2003, WWW '03.

[8]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[9]  Tao Mei,et al.  CrowdReranking: exploring multiple search engines for visual search reranking , 2009, SIGIR.

[10]  Berthier A. Ribeiro-Neto,et al.  Concept-based interactive query expansion , 2005, CIKM '05.

[11]  Kilian Q. Weinberger,et al.  Resolving tag ambiguity , 2008, ACM Multimedia.

[12]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[13]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[14]  Ricardo A. Baeza-Yates,et al.  Query Recommendation Using Query Logs in Search Engines , 2004, EDBT Workshops.

[15]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[16]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[17]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[18]  Claudio Carpineto,et al.  An information-theoretic approach to automatic query expansion , 2001, TOIS.

[19]  R. Gerrig,et al.  心理学与生活=Psychology and life , 2003 .

[20]  Stefan M. Rüger,et al.  NNk Networks for Content-Based Image Retrieval , 2004, ECIR.

[21]  Xiaoou Tang,et al.  Real time google and live image search re-ranking , 2008, ACM Multimedia.

[22]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[23]  Newton Lee,et al.  ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP) , 2007, CIE.

[24]  Xian-Sheng Hua,et al.  Finding image exemplars using fast sparse affinity propagation , 2008, ACM Multimedia.

[25]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[26]  Yen-Jen Oyang,et al.  Relevant term suggestion in interactive web search based on contextual information in query session logs , 2003, J. Assoc. Inf. Sci. Technol..

[27]  Gareth J. F. Jones,et al.  Applying summarization techniques for term selection in relevance feedback , 2001, SIGIR '01.

[28]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[29]  Xian-Sheng Hua,et al.  Bayesian video search reranking , 2008, ACM Multimedia.

[30]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[31]  William Brown,et al.  Psychology and life , 1934 .

[32]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..