A new error analysis for discontinuous finite element methods for linear elliptic problems
暂无分享,去创建一个
[1] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[2] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[3] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[4] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[5] R. B. Kellogg,et al. SINGULARITIES IN INTERFACE PROBLEMS , 1971 .
[6] D. Schötzau,et al. ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .
[7] Paul Houston,et al. An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems , 2011 .
[8] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[9] Susanne C. Brenner,et al. A W-cycle algorithm for a weakly over-penalized interior penalty method , 2007 .
[10] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[11] Susanne C. Brenner,et al. Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..
[12] Carsten Carstensen,et al. A unifying theory of a posteriori error control for discontinuous Galerkin FEM , 2009, Numerische Mathematik.
[13] Susanne C. Brenner,et al. Convergence of nonconforming multigrid methods without full elliptic regularity , 1999, Math. Comput..
[14] S. C. Brenner,et al. Poincaré–Friedrichs Inequalities for Piecewise H 2 Functions , 2004 .
[15] Xiaobing Feng,et al. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..
[16] T. Hughes,et al. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .
[17] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[18] Susanne C. Brenner,et al. A Weakly Over-Penalized Non-Symmetric Interior Penalty Method , 2007 .
[19] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[20] Thirupathi Gudi,et al. Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2008, J. Sci. Comput..
[21] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[22] Igor Mozolevski,et al. hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation , 2007, J. Sci. Comput..
[23] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[24] S. C. Brenner,et al. POINCAR´ E-FRIEDRICHS INEQUALITIES FOR PIECEWISE H 1 FUNCTIONS ∗ , 2003 .
[25] G. A. Baker. Finite element methods for elliptic equations using nonconforming elements , 1977 .
[26] R. Verfiirth. A posteriori error estimation and adaptive mesh-refinement techniques , 2001 .
[27] Susanne C. Brenner,et al. C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..
[28] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[29] S. C. Brenner,et al. An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem , 2010 .
[30] Ilaria Perugia,et al. An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..
[31] Susanne C. Brenner. Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions. , 2004 .
[32] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[33] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[34] Xiaobing Feng,et al. Two-Level Non-Overlapping Schwarz Preconditioners for a Discontinuous Galerkin Approximation of the Biharmonic Equation , 2005, J. Sci. Comput..
[35] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[36] Susanne C. Brenner,et al. Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..
[37] Susanne C. Brenner,et al. Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method , 2011, J. Sci. Comput..