The inverse electromagnetic shaping problem

The inverse problem concerning electromagnetic casting of molten metals consists of looking for an electric current density distribution such that the induced electromagnetic field makes a given mass of liquid metal acquire a predefined shape. This problem is formulated here as an optimization problem where the positions of a finite set of inductors are the design variables. Two different formulations for this optimization problem for the two-dimensional case are proposed. The first one minimizes the difference between the target and the equilibrium shapes while the second approach minimizes the L2 norm of a fictitious surface pressure that makes the target shape to be in mechanical equilibrium. The optimization problems are solved using Feasible Arc Interior Point Algorithm, a line search interior-point algorithm for nonlinear optimization. Some examples are presented to show the effectiveness of the proposed approaches.

[1]  Olivier Coulaud,et al.  Numerical approximation of a free boundary problem arising in electromagnetic shaping , 1994 .

[2]  R. Haftka,et al.  Simultaneous nonlinear structural analysis and design , 1989 .

[3]  Jean R. Roche,et al.  Second order derivatives, Newton method,application to shape optimization , 1995 .

[4]  J. Brancher,et al.  Étude de la déformation d'un liquide magnétique , 1985 .

[5]  José Herskovits,et al.  Shape optimization using the boundary element method and a SAND interior point algorithm for constrained optimization , 2008 .

[6]  J. Roche,et al.  Newton's Method in Shape Optimisation: A Three-Dimensional Case , 2000 .

[7]  J. Brancher,et al.  The inverse shaping problem , 1991 .

[8]  José Herskovits,et al.  Mathematical programming models and algorithms for engineering design optimization , 2005 .

[9]  J. Roche,et al.  Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms , 1991 .

[10]  R. Haftka Simultaneous analysis and design , 1985 .

[11]  H. K. Moffatt Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals , 1985, Journal of Fluid Mechanics.

[12]  Cao Zhiqiang,et al.  Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys , 2002 .

[13]  Qian Wang,et al.  Review of formulations for structural and mechanical system optimization , 2005 .

[14]  O. Séro-Guillaume,et al.  The shape of a magnetic liquid drop , 1992, Journal of Fluid Mechanics.

[15]  J. Herskovits Feasible Direction Interior-Point Technique for Nonlinear Optimization , 1998 .

[16]  H. K. Moffatt Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations , 1986, Journal of Fluid Mechanics.

[17]  A Tridimensional Inverse Shaping Problem , 1996 .

[18]  H. K. Moffatt,et al.  Fluid dynamical aspects of the levitation-melting process , 1982, Journal of Fluid Mechanics.

[19]  H. Fu,et al.  Electromagnetic shaping and solidification control of Ni-base superalloys under vacuum , 2004 .

[20]  Antoine Henrot,et al.  Un problème inverse en formage des métaux liquides , 1989 .

[21]  R. Kress Linear Integral Equations , 1989 .

[22]  Jean R. Roche,et al.  Numerical simulation of tridimensional electromagnetic shaping of liquid metals , 1993 .

[23]  M. Garnier,et al.  Le problème de frontière libre en lévitation électromagnétique , 1986 .

[24]  José Herskovits,et al.  A quasi-Newton interior point algorithm applied to constrained optimum design in computational fluid dynamics , 1996 .