Blue luminescence and superstructures from magic size clusters of CdSe.

In this letter, we present a low-temperature synthesis route revealing a new type of ultrasmall CdSe nanoparticle family with exceptional narrow blue emissions between 437 and 456 nm and full width at half-maxima below 20 nm. Transmission electron microscopy characterization shows the uniformity of the nanoparticles, which have a diameter of 1.6 nm. After surface modification, the spherical particles assemble into nanowires, demonstrating their potential as building blocks for the generation of highly ordered superstructures. They can also be used as single source precursors for the synthesis of CdSe nanocrystals.

[1]  T. Nann,et al.  Synthesis and spectroscopic characterization of fluorescent blue-emitting ultrastable CdSe clusters. , 2008, Small.

[2]  Yadong Li,et al.  An effective oxidation route to blue emission CdSe quantum dots. , 2008, Inorganic chemistry.

[3]  A. Eychmüller,et al.  CdSe nanorod synthesis: a new approach. , 2007, Small.

[4]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[5]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[6]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[7]  Y. Zong,et al.  CdSe nanocrystals as hydroperoxide scavengers: a new approach to highly sensitive quantification of lipid hydroperoxides. , 2007, Small.

[8]  G. Gigli,et al.  Blue light emitting diodes based on fluorescent CdSe∕ZnS nanocrystals , 2007 .

[9]  A. Alivisatos,et al.  Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. , 2007, Journal of the American Chemical Society.

[10]  M. Bode,et al.  Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots , 2006 .

[11]  M. Marques,et al.  Identification of fullerene-like CdSe nanoparticles from optical spectroscopy calculations , 2006, cond-mat/0605517.

[12]  D. Wexler,et al.  Synthesis and characterization of one-dimensional CdSe nanostructures , 2006 .

[13]  A. Eisfeld,et al.  Absorption spectra of quantum aggregates interacting via long-range forces. , 2006, Physical review letters.

[14]  Y. Kawazoe,et al.  Stoichiometric and ultra-stable nanoparticles of II-VI compound semiconductors , 2005 .

[15]  M. Uehara,et al.  Synthesis of CdSe magic-sized nanocluster and its effect on nanocrystal preparation in a microfluidic reactor , 2004 .

[16]  S. Wuister,et al.  Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. , 2004, The Journal of chemical physics.

[17]  Y. Kawazoe,et al.  Ultra-stable nanoparticles of CdSe revealed from mass spectrometry , 2004, Nature materials.

[18]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[19]  Wilfried van Sark,et al.  Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots , 2002 .

[20]  F. Würthner,et al.  Hydrogen bond-directed aggregation of diazadibenzoperylene dyes in low-polarity solvents and the solid state , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[22]  Scott L. Cumberland,et al.  Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials , 2002 .

[23]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[24]  U. Banin,et al.  Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. , 2001, Journal of the American Chemical Society.

[25]  U. Banin,et al.  Molecular Limit of a Bulk Semiconductor: Size Dependence of the “Band Gap” in CdSe Cluster Molecules , 2000 .

[26]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[27]  M. Bruchez,et al.  Semiconductor Nanocrystals as Fluorescent Biological Labels , 1998 .

[28]  A. Eichhöfer,et al.  Synthesis and Structure of the Nanoclusters [Hg32Se14(SePh)36], [Cd32Se14(SePh)36-(PPh3)4],[P(Et)2(Ph)C4H8OSiMe3]5- [Cd18I17(PSiMe3)12], and [N(Et)3C4H8OSiMe3]5[Cd18I17(PSiMe3)12]† , 1996 .

[29]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[30]  Vicki L. Colvin,et al.  X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface , 1994 .

[31]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[32]  Ying Wang,et al.  Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core , 1993, Science.

[33]  M. Fox,et al.  Cadmium benzenethiolate clusters of various size: molecular models for metal chalcogenide semiconductors , 1992 .

[34]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[35]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[36]  I. Dance,et al.  Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4M10(SPh)16] (E = sulfur or selenium; M = zinc or cadmium): molecular supertetrahedral fragments of the cubic metal chalcogenide lattice , 1984 .

[37]  EDWIN E. JELLEY,et al.  Spectral Absorption and Fluorescence of Dyes in the Molecular State , 1936, Nature.

[38]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.