A Randomized Time-Work Optimal Parallel Algorithm for Finding a Minimum Spanning Forest

We present a randomized algorithm to find a minimum spanning forest (MSF) in an undirected graph. With high probability, the algorithm runs in logarithmic time and linear work on an exclusive read exclusive write (EREW) PRAM. This result is optimal w.r. t. both work and parallel time, and is the first provably optimal parallel algorithm for this problem under both measures. We also give a simple, general processor allocation scheme for tree-like computations.

[1]  Philip N. Klein,et al.  A Linear-Work Parallel Algorithm for Finding Minimum Spanning Trees , 1994, SPAA 1994.

[2]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[3]  Yijie Han,et al.  Concurrent threads and optimal parallel minimum spanning trees algorithm , 2001, JACM.

[4]  Valerie King A Simpler Minimum Spanning Tree Verification Algorithm , 1995, WADS.

[5]  Chung Keung Poon,et al.  An Optimal EREW PRAM Algorithm for Minimum Spanning Tree Verification , 1997, Inf. Process. Lett..

[6]  Uri Zwick,et al.  Optimal randomized EREW PRAM algorithms for finding spanning forests and for other basic graph connectivity problems , 1996, SODA '96.

[7]  Yijie Han,et al.  On the parallel time complexity of undirected connectivity and minimum spanning trees , 1999, SODA '99.

[8]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[9]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[10]  Seth Pettie,et al.  An optimal minimum spanning tree algorithm , 2000, JACM.

[11]  Michael T. Goodrich,et al.  Sorting on a parallel pointer machine with applications to set expression evaluation , 1996, JACM.

[12]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[13]  Seth Pettie,et al.  A Randomized Time-Work Optimal Parallel Algorithm for Finding a Minimum Spanning Forest , 1999, RANDOM-APPROX.

[14]  R. Prim Shortest connection networks and some generalizations , 1957 .

[15]  Uri Zwick,et al.  An Optimal Randomised Logarithmic Time Connectivity Algorithm for the EREW PRAM , 1996, J. Comput. Syst. Sci..

[16]  Baruch Awerbuch,et al.  New Connectivity and MSF Algorithms for Shuffle-Exchange Network and PRAM , 1987, IEEE Transactions on Computers.

[17]  Chung Keung Poon,et al.  A Randomized Linear-Work EREW PRAM Algorithm to Find a Minimum Spanning Forest , 1997, Algorithmica.

[18]  Richard Cole,et al.  Finding minimum spanning forests in logarithmic time and linear work using random sampling , 1996, SPAA '96.

[19]  Donald B. Johnson,et al.  Connected Components in O (log^3/2 n) Parallel Time for the CREW PRAM , 1997, J. Comput. Syst. Sci..

[20]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[21]  Yossi Matias,et al.  Can shared-memory model serve as a bridging model for parallel computation? , 1997, SPAA '97.

[22]  S. Zafar Abstract , 2002, Veterinary Record.

[23]  Yossi Matias,et al.  The QRQW PRAM: accounting for contention in parallel algorithms , 1994, SODA '94.

[24]  Seth Pettie,et al.  Minimizing randomness in minimum spanning tree, parallel connectivity, and set maxima algorithms , 2002, SODA '02.