MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square

The rapid development of autonomous driving and mobile mapping calls for off-the-shelf LiDAR SLAM solutions that are adaptive to LiDARs of different specifications on various complex scenarios. To this end, we propose MULLS, an efficient, low-drift, and versatile 3D LiDAR SLAM system. For the front-end, roughly classified feature points (ground, facade, pillar, beam, etc.) are extracted from each frame using dual-threshold ground filtering and principal components analysis. Then the registration between the current frame and the local submap is accomplished efficiently by the proposed multi-metric linear least square iterative closest point algorithm. Point-to-point (plane, line) error metrics within each point class are jointly optimized with a linear approximation to estimate the ego-motion. Static feature points of the registered frame are appended into the local map to keep it updated. For the back-end, hierarchical pose graph optimization is conducted among regularly stored history submaps to reduce the drift resulting from dead reckoning. Extensive experiments are carried out on three datasets with more than 100,000 frames collected by seven types of LiDAR on various outdoor and indoor scenarios. On the KITTI benchmark, MULLS ranks among the top LiDAR-only SLAM systems with real-time performance.

[1]  Kenji Koide,et al.  LiTAMIN2: Ultra Light LiDAR-based SLAM using Geometric Approximation applied with KL-Divergence , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[2]  C. Guaragnella,et al.  LOCUS: A Multi-Sensor Lidar-Centric Solution for High-Precision Odometry and 3D Mapping in Real-Time , 2020, IEEE Robotics and Automation Letters.

[3]  K. Schindler,et al.  PREDATOR: Registration of 3D Point Clouds with Low Overlap , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Bing Wang,et al.  PSF-LO: Parameterized Semantic Features Based Lidar Odometry , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Yi He,et al.  S4-SLAM: A real-time 3D LIDAR SLAM system for ground/watersurface multi-scene outdoor applications , 2020, Autonomous Robots.

[6]  Zonghai Chen,et al.  LiPMatch: LiDAR Point Cloud Plane Based Loop-Closure , 2020, IEEE Robotics and Automation Letters.

[7]  Ming Li,et al.  LodoNet: A Deep Neural Network with 2D Keypoint Matching for 3D LiDAR Odometry Estimation , 2020, ACM Multimedia.

[8]  Chen Wang,et al.  ISPRS BENCHMARK ON MULTISENSORY INDOOR MAPPING AND POSITIONING , 2020 .

[9]  Li Wang,et al.  SLAM integrated mobile mapping system in complex urban environments , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[10]  David Fernández Llorca,et al.  Fail-Aware LIDAR-Based Odometry for Autonomous Vehicles , 2020, Sensors.

[11]  Cyrill Stachniss,et al.  OverlapNet: Loop Closing for LiDAR-based SLAM , 2020, Robotics: Science and Systems.

[12]  Wei Wang,et al.  LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  Bisheng Yang,et al.  A novel skyline context descriptor for rapid localization of terrestrial laser scans to airborne laser scanning point clouds , 2020 .

[14]  Tilman Kühner,et al.  Large-Scale Volumetric Scene Reconstruction using LiDAR , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Cyrill Stachniss,et al.  Adaptive Robust Kernels for Non-Linear Least Squares Problems , 2020, IEEE Robotics and Automation Letters.

[16]  Lihua Xie,et al.  Intensity Scan Context: Coding Intensity and Geometry Relations for Loop Closure Detection , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Eric Heiden,et al.  LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of Perceptually-Degraded Subterranean Environments , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Heng Yang,et al.  TEASER: Fast and Certifiable Point Cloud Registration , 2020, IEEE Transactions on Robotics.

[19]  J. Hyyppä,et al.  CAE-LO: LiDAR Odometry Leveraging Fully Unsupervised Convolutional Auto-Encoder for Interest Point Detection and Feature Description , 2020, arXiv.org.

[20]  Xu Liu,et al.  SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory , 2019, IEEE Robotics and Automation Letters.

[21]  Cyrill Stachniss,et al.  SuMa++: Efficient LiDAR-based Semantic SLAM , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Zheng Fang,et al.  A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Grzegorz Cielniak,et al.  Semantically Assisted Loop Closure in SLAM Using NDT Histograms , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  L. Carlone,et al.  Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection , 2019, IEEE Robotics and Automation Letters.

[25]  Jiarong Lin,et al.  Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Yong Liu,et al.  LIC-Fusion: LiDAR-Inertial-Camera Odometry , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[27]  Raquel Urtasun,et al.  Exploiting Sparse Semantic HD Maps for Self-Driving Vehicle Localization , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[28]  Dmitri Kovalenko,et al.  Sensor Aware Lidar Odometry , 2019, 2019 European Conference on Mobile Robots (ECMR).

[29]  Hannes Sommer,et al.  SegMap: Segment-based mapping and localization using data-driven descriptors , 2019, Int. J. Robotics Res..

[30]  José-Luis Blanco-Claraco,et al.  A Modular Optimization Framework for Localization and Mapping , 2019, Robotics: Science and Systems.

[31]  2019 International Conference on Robotics and Automation (ICRA) , 2019 .

[32]  Xin Li,et al.  LO-Net: Deep Real-Time Lidar Odometry , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Ming Liu,et al.  Tightly Coupled 3D Lidar Inertial Odometry and Mapping , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[34]  Tat-Jun Chin,et al.  Practical optimal registration of terrestrial LiDAR scan pairs , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[35]  François Michaud,et al.  RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation , 2018, J. Field Robotics.

[36]  Dietrich Paulus,et al.  MC2SLAM: Real-Time Inertial Lidar Odometry Using Two-Scan Motion Compensation , 2018, GCPR.

[37]  Brendan Englot,et al.  LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[38]  Ayoung Kim,et al.  Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[39]  Martin Lauer,et al.  LIMO: Lidar-Monocular Visual Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[40]  Cyrill Stachniss,et al.  Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments , 2018, Robotics: Science and Systems.

[41]  Jean-Emmanuel Deschaud,et al.  IMLS-SLAM: Scan-to-Model Matching Based on 3D Data , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[42]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[43]  Jonathan T. Barron,et al.  A General and Adaptive Robust Loss Function , 2017, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Li He,et al.  M2DP: A novel 3D point cloud descriptor and its application in loop closure detection , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[45]  Konrad Schindler,et al.  FAST SEMANTIC SEGMENTATION OF 3D POINT CLOUDS WITH STRONGLY VARYING DENSITY , 2016 .

[46]  Jiaolong Yang,et al.  Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Roland Siegwart,et al.  A Review of Point Cloud Registration Algorithms for Mobile Robotics , 2015, Found. Trends Robotics.

[48]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[49]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[50]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[51]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[52]  Niloy J. Mitra,et al.  Super4PCS: Fast Global Pointcloud Registration via Smart Indexing , 2019 .

[53]  Giorgio Grisetti,et al.  Robust optimization of factor graphs by using condensed measurements , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[54]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[56]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[57]  Frank Dellaert,et al.  Multi-level submap based SLAM using nested dissection , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[58]  Cyrill Stachniss,et al.  Hierarchical optimization on manifolds for online 2D and 3D mapping , 2010, 2010 IEEE International Conference on Robotics and Automation.

[59]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[60]  H. Temeltas,et al.  SLAM for robot navigation , 2008, IEEE Aerospace and Electronic Systems Magazine.

[61]  Andrea Censi,et al.  An ICP variant using a point-to-line metric , 2008, 2008 IEEE International Conference on Robotics and Automation.

[62]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[63]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Hua Zhu,et al.  Efficient Laser-Based 3D SLAM for Coal Mine Rescue Robots , 2019, IEEE Access.

[65]  Aleksandr V. Segal,et al.  Generalized-ICP , 2009, Robotics: Science and Systems.

[66]  Kok-Lim Low Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration , 2004 .