Time-Reversal MUSIC Imaging of Extended Targets

This paper develops, within a general framework that is applicable to rather arbitrary electromagnetic and acoustic remote sensing systems, a theory of time-reversal ldquomultiple signal classificationrdquo (MUSIC)-based imaging of extended (nonpoint-like) scatterers (targets). The general analysis applies to arbitrary remote sensing geometry and sheds light onto how the singular system of the scattering matrix relates to the geometrical and propagation characteristics of the entire transmitter-target-receiver system and how to use this effect for imaging. All the developments are derived within exact scattering theory which includes multiple scattering effects. The derived time-reversal MUSIC methods include both interior sampling, as well as exterior sampling (or enclosure) approaches. For presentation simplicity, particular attention is given to the time-harmonic case where the informational wave modes employed for target interrogation are purely spatial, but the corresponding generalization to broadband fields is also given. This paper includes computer simulations illustrating the derived theory and algorithms.

[1]  David Colton,et al.  The simple method for solving the electromagnetic inverse scattering problem: the case of TE polarized waves , 1998 .

[2]  A. Devaney,et al.  Nonuniqueness in inverse source and scattering problems , 1982 .

[3]  Wolfgang Osten,et al.  Introduction to Inverse Problems in Imaging , 1999 .

[4]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[5]  G.A. Tsihrintzis,et al.  Maximum likelihood estimation of object location in diffraction tomography , 1991, IEEE Trans. Signal Process..

[6]  Michele Piana,et al.  Numerical validation of the linear sampling method , 2002 .

[7]  Margaret Cheney,et al.  The Linear Sampling Method and the MUSIC Algorithm , 2001 .

[8]  R. P. Porter,et al.  Generalized holography and computational solutions to inverse source problems , 1982 .

[9]  Hongkai Zhao,et al.  Imaging of location and geometry for extended targets using the response matrix , 2004 .

[10]  H. Lev-Ari,et al.  The time-reversal technique re-interpreted: subspace-based signal processing for multi-static target location , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).

[11]  Mathias Fink,et al.  Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method , 1999 .

[12]  Roland Potthast,et al.  A fast new method to solve inverse scattering problems , 1996 .

[13]  Rocco Pierri,et al.  On the local minima problem in conductivity imaging via a quadratic approach , 1997 .

[14]  Tarek M. Habashy,et al.  Invisible Bodies and Uniqueness of the Inverse Scattering Problem , 1993 .

[15]  A. Kirsch The factorization method for Maxwell's equations , 2004 .

[16]  Sean K Lehman,et al.  Transmission mode time-reversal super-resolution imaging. , 2003, The Journal of the Acoustical Society of America.

[17]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[18]  Anthony J. Devaney,et al.  Estimation of object location from wideband scattering data , 1999, IEEE Trans. Image Process..

[19]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[20]  Pierre Borderies,et al.  DORT method as applied to ultrawideband signals for detection of buried objects , 2003, IEEE Trans. Geosci. Remote. Sens..

[21]  L. Carin,et al.  Wideband time-reversal imaging of an elastic target in an acoustic waveguide. , 2004, The Journal of the Acoustical Society of America.

[22]  S. Twomey The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements , 1965 .

[23]  Fred K. Gruber,et al.  Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets , 2007, EURASIP J. Adv. Signal Process..

[24]  Roland Potthast,et al.  Inverse obstacle scattering in the time domain , 2003 .

[25]  I. Arai,et al.  Super-resolution imaging for point reflectors near transmitting and receiving array , 2004, IEEE Transactions on Antennas and Propagation.

[26]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[27]  J. Kong Scattering of Electromagnetic Waves , 2021, Principles of Scattering and Transport of Light.

[28]  Mario Bertero,et al.  Generalised information theory for inverse problems in signal processing , 1984 .

[29]  Guillaume Bal,et al.  Time-reversal-based detection in random media , 2005 .

[30]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[31]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[32]  John Sylvester,et al.  A scattering support for broadband sparse far field measurements , 2005 .

[33]  J. Ortega Matrix Theory: A Second Course , 1987 .

[34]  Mathias Fink,et al.  Decomposition of the time reversal operator: Detection and selective focusing on two scatterers , 1996 .

[35]  A. Devaney,et al.  Time-reversal imaging with multiple signal classification considering multiple scattering between the targets , 2004 .

[36]  D.H. Chambers,et al.  Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field , 2004, IEEE Transactions on Antennas and Propagation.

[37]  J. Kong,et al.  Scattering of Electromagnetic Waves, Numerical Simulations , 2001 .

[38]  Mickael Tanter,et al.  Time-reversed acoustics , 2000 .

[39]  Anthony J. Devaney,et al.  Maximum likelihood estimation of object location in diffraction tomography. II. Strongly scattering objects , 1991, IEEE Trans. Signal Process..

[40]  Anthony J. Devaney,et al.  Time-reversal-based imaging and inverse scattering of multiply scattering point targets , 2005 .

[41]  Anthony J. Devaney,et al.  Inverse scattering in inhomogeneous background media: II. Multi-frequency case and SVD formulation , 2004 .

[42]  V. Edwards Scattering Theory , 1973, Nature.

[43]  Roland Potthast,et al.  A survey on sampling and probe methods for inverse problems , 2006 .

[44]  D. Miller,et al.  Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. , 2000, Applied optics.

[45]  Anthony J. Devaney,et al.  Inverse scattering in inhomogeneous background media , 2003 .

[46]  A. J. Devaney,et al.  Minimum source region for a given far-field pattern , 1997 .

[47]  A MarengoEdwin,et al.  Subspace-based localization and inverse scattering of multiply scattering point targets , 2007 .

[48]  Richard Barakat,et al.  Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics , 1985 .

[49]  B. Hoenders The Uniqueness of Inverse Problems , 1978 .

[50]  F. Simonetti,et al.  Multiple scattering: the key to unravel the subwavelength world from the far-field pattern of a scattered wave. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[52]  Andreas Kirsch,et al.  The factorization method for a class of inverse elliptic problems , 2005 .

[53]  M. Bertero Linear Inverse and III-Posed Problems , 1989 .

[54]  A. Devaney Nonuniqueness in the inverse scattering problem , 1978 .

[55]  M. B. Dobrin Introduction to Geophysical Prospecting , 1976 .

[56]  Hongkai Zhao,et al.  A direct imaging algorithm for extended targets , 2006 .

[57]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[58]  T. Kubo,et al.  Electromagnetic Fields , 2008 .

[59]  Giovanni Leone,et al.  Information content of Born scattered fields: results in the circular cylindrical case , 1998 .

[60]  F. K. Gruber,et al.  Noniterative analytical formula for inverse scattering of multiply scattering point targets. , 2006, The Journal of the Acoustical Society of America.

[61]  N. I. Grinberg,et al.  The factorization method for obstacles with a-priori separated sound-soft and sound-hard parts , 2004, Math. Comput. Simul..

[62]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.

[63]  Maria Cristina Recchioni,et al.  The use of the Pontryagin maximum principle in a furtivity problem in time-dependent acoustic obstacle scattering , 2001 .

[64]  V. Isakov Uniqueness and stability in multi-dimensional inverse problems , 1993 .

[65]  Claire Prada,et al.  Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix. , 2003, The Journal of the Acoustical Society of America.

[66]  Hongkai Zhao,et al.  Analysis of the Response Matrix for an Extended Target , 2004, SIAM J. Appl. Math..

[67]  Mathias Fink,et al.  Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media , 1994 .

[68]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[69]  Israel Gohberg,et al.  Basic Classes of Linear Operators , 2004 .

[70]  Hongkai Zhao,et al.  A direct imaging method using far-field data* , 2007 .

[71]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[72]  D H Chambers,et al.  Analysis of the time-reversal operator for scatterers of finite size. , 2002, The Journal of the Acoustical Society of America.

[73]  Bernhard J. Hoenders,et al.  Existence of invisible nonscattering objects and nonradiating sources , 1997 .

[74]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[75]  Steven Kusiak,et al.  The scattering support , 2003 .

[76]  Roland Potthast,et al.  A point source method for inverse acoustic and electromagnetic obstacle scattering problems , 1998 .

[77]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[78]  D H Chambers,et al.  Time reversal for a single spherical scatterer. , 2001, The Journal of the Acoustical Society of America.

[79]  Francesco Soldovieri,et al.  On the information content of the radiated fields in the near zone over bounded domains , 1998 .