Depth functions in nonparametric multivariate inference

Depth functions, as an emerging methodology in nonparametric multivariate inference, are reviewed in brief. The special relationships among depth, outlyingness, centered rank, and quantile functions are indicated.

[1]  B. M. Brown,et al.  An Affine Invariant Bivariate Version of the Sign Test , 1989 .

[2]  Hannu Oja,et al.  On the Efficiency of Affine Invariant Multivariate Rank Tests , 1998 .

[3]  Rebecka Jörnsten Clustering and classification based on the L 1 data depth , 2004 .

[4]  B. Chakraborty On Affine Equivariant Multivariate Quantiles , 2001 .

[5]  Hannu Oja,et al.  On Certain Bivariate Sign Tests and Medians , 1992 .

[6]  Bell Telephone,et al.  ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA , 1972 .

[7]  R. Theodorescu,et al.  Halfplane trimming for bivariate distributions , 1994 .

[8]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[9]  K. Mosler,et al.  Zonoid trimming for multivariate distributions , 1997 .

[10]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[11]  Robert Serfling,et al.  Nonparametric multivariate kurtosis and tailweight measures , 2005 .

[12]  Frederick Mosteller,et al.  Data Analysis and Regression , 1978 .

[13]  J. Gower,et al.  Methods for statistical data analysis of multivariate observations , 1977, A Wiley publication in applied statistics.

[14]  A. B. Yeh,et al.  Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap , 1997 .

[15]  P. Chaudhuri On a geometric notion of quantiles for multivariate data , 1996 .

[16]  J. L. Hodges,et al.  A Bivariate Sign Test , 1955 .

[17]  K. Mosler Multivariate Dispersion, Central Regions, and Depth , 2002 .

[18]  I. Mizera On depth and deep points: a calculus , 2002 .

[19]  L. E. Fouraker,et al.  The Theory of Monopolistic Competition , 1933 .

[20]  V. Koltchinskii M-estimation, convexity and quantiles , 1997 .

[21]  Hannu Oja,et al.  ON THE EFFICIENCY OF MULTIVARIATE SPATIAL SIGN AND RANK TESTS , 1997 .

[22]  Christopher G. Small Measures of centrality for multivariate and directional distributions , 1987 .

[23]  P. Rousseeuw,et al.  The Bagplot: A Bivariate Boxplot , 1999 .

[24]  Hannu Oja,et al.  Multivariate spatial sign and rank methods , 1995 .

[25]  M. Romanazzi Influence Function of Halfspace Depth , 2001 .

[26]  Hannu Oja,et al.  Affine Invariant Multivariate One‐Sample Sign Tests , 1994 .

[27]  Jens Breckling,et al.  A note on multivariate M-quantiles , 2001 .

[28]  Robert Serfling,et al.  Nonparametric Multivariate Descriptive Measures Based on Spatial Quantiles , 2004 .

[29]  Joan Antoni Sellarès,et al.  Fast implementation of depth contours using topological sweep , 2001, SODA '01.

[30]  C. Small A Survey of Multidimensional Medians , 1990 .

[31]  E. Chamberlin The Theory of Monopolistic Competition , 1933 .

[32]  Lee Shepstone Methods for Statistical Data Analysis of Multivariate Observations, Second Edition , 1998 .

[33]  H. Hotelling Stability in Competition , 1929 .

[34]  B. M. Brown,et al.  Affine Invariant Rank Methods in the Bivariate Location Model , 1987 .

[35]  Cun-Hui Zhang,et al.  The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  K. Pearson Biometrika , 1902, The American Naturalist.

[37]  Bruce M. Hill A Relationship Between Hodges' Bivariate Sign Test and a Non-Parametric Test of Daniels , 1960 .

[38]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[39]  Bettina Speckmann,et al.  Efficient algorithms for maximum regression depth , 1999, SCG '99.

[40]  D. Nolan Asymptotics for multivariate trimming , 1992 .

[41]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .

[42]  Diane L. Souvaine,et al.  Computational Geometry and Statistical Depth Measures , 2004 .

[43]  Jim Freeman,et al.  Outliers in Statistical Data (3rd edition) , 1995 .

[44]  J. Marden,et al.  BIVARIATE QQ-PLOTS AND SPIDER WEB PLOTS , 1998 .

[45]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[46]  V. Barnett The Ordering of Multivariate Data , 1976 .

[47]  J. Massé Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean , 2004 .

[48]  Robert Serfling,et al.  Quantile functions for multivariate analysis: approaches and applications , 2002 .

[49]  Regina Y. Liu,et al.  Notions of Limiting P Values Based on Data Depth and Bootstrap , 1997 .

[50]  Jean Meloche,et al.  Multivariate density estimation by probing depth , 1997 .

[51]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[52]  R. Serfling A Depth Function and a Scale Curve Based on Spatial Quantiles , 2002 .

[53]  Jian Zhang Some Extensions of Tukey's Depth Function , 2002 .

[54]  R. Y. Liu,et al.  On a notion of simplicial depth. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Y. Zuo Projection-based depth functions and associated medians , 2003 .