Depth functions in nonparametric multivariate inference
暂无分享,去创建一个
[1] B. M. Brown,et al. An Affine Invariant Bivariate Version of the Sign Test , 1989 .
[2] Hannu Oja,et al. On the Efficiency of Affine Invariant Multivariate Rank Tests , 1998 .
[3] Rebecka Jörnsten. Clustering and classification based on the L 1 data depth , 2004 .
[4] B. Chakraborty. On Affine Equivariant Multivariate Quantiles , 2001 .
[5] Hannu Oja,et al. On Certain Bivariate Sign Tests and Medians , 1992 .
[6] Bell Telephone,et al. ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA , 1972 .
[7] R. Theodorescu,et al. Halfplane trimming for bivariate distributions , 1994 .
[8] H. Oja. Descriptive Statistics for Multivariate Distributions , 1983 .
[9] K. Mosler,et al. Zonoid trimming for multivariate distributions , 1997 .
[10] Regina Y. Liu,et al. Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .
[11] Robert Serfling,et al. Nonparametric multivariate kurtosis and tailweight measures , 2005 .
[12] Frederick Mosteller,et al. Data Analysis and Regression , 1978 .
[13] J. Gower,et al. Methods for statistical data analysis of multivariate observations , 1977, A Wiley publication in applied statistics.
[14] A. B. Yeh,et al. Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap , 1997 .
[15] P. Chaudhuri. On a geometric notion of quantiles for multivariate data , 1996 .
[16] J. L. Hodges,et al. A Bivariate Sign Test , 1955 .
[17] K. Mosler. Multivariate Dispersion, Central Regions, and Depth , 2002 .
[18] I. Mizera. On depth and deep points: a calculus , 2002 .
[19] L. E. Fouraker,et al. The Theory of Monopolistic Competition , 1933 .
[20] V. Koltchinskii. M-estimation, convexity and quantiles , 1997 .
[21] Hannu Oja,et al. ON THE EFFICIENCY OF MULTIVARIATE SPATIAL SIGN AND RANK TESTS , 1997 .
[22] Christopher G. Small. Measures of centrality for multivariate and directional distributions , 1987 .
[23] P. Rousseeuw,et al. The Bagplot: A Bivariate Boxplot , 1999 .
[24] Hannu Oja,et al. Multivariate spatial sign and rank methods , 1995 .
[25] M. Romanazzi. Influence Function of Halfspace Depth , 2001 .
[26] Hannu Oja,et al. Affine Invariant Multivariate One‐Sample Sign Tests , 1994 .
[27] Jens Breckling,et al. A note on multivariate M-quantiles , 2001 .
[28] Robert Serfling,et al. Nonparametric Multivariate Descriptive Measures Based on Spatial Quantiles , 2004 .
[29] Joan Antoni Sellarès,et al. Fast implementation of depth contours using topological sweep , 2001, SODA '01.
[30] C. Small. A Survey of Multidimensional Medians , 1990 .
[31] E. Chamberlin. The Theory of Monopolistic Competition , 1933 .
[32] Lee Shepstone. Methods for Statistical Data Analysis of Multivariate Observations, Second Edition , 1998 .
[33] H. Hotelling. Stability in Competition , 1929 .
[34] B. M. Brown,et al. Affine Invariant Rank Methods in the Bivariate Location Model , 1987 .
[35] Cun-Hui Zhang,et al. The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[36] K. Pearson. Biometrika , 1902, The American Naturalist.
[37] Bruce M. Hill. A Relationship Between Hodges' Bivariate Sign Test and a Non-Parametric Test of Daniels , 1960 .
[38] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[39] Bettina Speckmann,et al. Efficient algorithms for maximum regression depth , 1999, SCG '99.
[40] D. Nolan. Asymptotics for multivariate trimming , 1992 .
[41] Regina Y. Liu,et al. A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .
[42] Diane L. Souvaine,et al. Computational Geometry and Statistical Depth Measures , 2004 .
[43] Jim Freeman,et al. Outliers in Statistical Data (3rd edition) , 1995 .
[44] J. Marden,et al. BIVARIATE QQ-PLOTS AND SPIDER WEB PLOTS , 1998 .
[45] R. Serfling,et al. General notions of statistical depth function , 2000 .
[46] V. Barnett. The Ordering of Multivariate Data , 1976 .
[47] J. Massé. Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean , 2004 .
[48] Robert Serfling,et al. Quantile functions for multivariate analysis: approaches and applications , 2002 .
[49] Regina Y. Liu,et al. Notions of Limiting P Values Based on Data Depth and Bootstrap , 1997 .
[50] Jean Meloche,et al. Multivariate density estimation by probing depth , 1997 .
[51] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[52] R. Serfling. A Depth Function and a Scale Curve Based on Spatial Quantiles , 2002 .
[53] Jian Zhang. Some Extensions of Tukey's Depth Function , 2002 .
[54] R. Y. Liu,et al. On a notion of simplicial depth. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[55] Y. Zuo. Projection-based depth functions and associated medians , 2003 .