From Hopf-Lax formula to optimal weak transfer plan

We study the properties of Hopf-Lax formula restricted to convex functions and characterize the optimal transfer plan for weak transport problem.

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  Paul-Marie Samson,et al.  Transport-entropy inequalities on locally acting groups of permutations , 2016, 1609.07315.

[3]  Y. Shu Hamilton-Jacobi Equations on Graph and Applications , 2015, Potential Analysis.

[4]  Max Fathi,et al.  Curvature and transport inequalities for Markov chains in discrete spaces , 2015, 1509.07160.

[5]  P. Tetali,et al.  Characterization of a class of weak transport-entropy inequalities on the line , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[6]  N. Feldheim,et al.  A note on the convex infimum convolution inequality , 2015, 1505.00240.

[7]  Paul-Marie Samson,et al.  Kantorovich duality for general transport costs and applications , 2014, 1412.7480.

[8]  F. Hirsch Peacocks and Associated Martingales, with Explicit Constructions , 2011 .

[9]  C. Villani Optimal Transport: Old and New , 2008 .

[10]  W. Gangbo,et al.  Shape recognition via Wasserstein distance , 2000 .

[11]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[12]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[13]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[14]  B. Maurey Some deviation inequalities , 1990, math/9201216.

[15]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[16]  J. Brenner An Inequality , 1971 .

[17]  Sorin Mardare On Poincaré and de Rham‘s theorems , 2008 .

[18]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[19]  L. Rüschendorf,et al.  On Optimal Multivariate Couplings , 1997 .

[20]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .