Viral proteins of bovine papillomavirus type 4 during the development of alimentary canal tumours.

[1]  M. Campo,et al.  Phenotypical characterization of lymphocytes infiltrating regressing papillomas , 1996, Journal of virology.

[2]  G. Grindlay,et al.  Bovine papillomavirus type 4. , 1996, International journal of oncology.

[3]  M. Campo,et al.  The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts , 1996, Journal of virology.

[4]  G. Grindlay,et al.  Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. , 1996, The Journal of general virology.

[5]  G. Grindlay,et al.  Vaccination of cattle with the N-terminus of L2 is necessary and sufficient for preventing infection by bovine papillomavirus-4. , 1995, Virology.

[6]  J. Kartenbeck,et al.  Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line , 1995, Journal of virology.

[7]  K. Fujikawa,et al.  Nuclear localization and transforming activity of human papillomavirus type 16 E7-beta-galactosidase fusion protein: characterization of the nuclear localization sequence. , 1994, Virology.

[8]  G. Barton,et al.  Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells , 1994, Journal of virology.

[9]  M. Campo,et al.  Experimental reproduction of the papilloma-carcinoma complex of the alimentary canal in cattle. , 1994, Carcinogenesis.

[10]  T. Iftner,et al.  Changes in RNA expression pattern during the malignant progression of cottontail rabbit papillomavirus-induced tumors in rabbits , 1994, Journal of virology.

[11]  G. Grindlay,et al.  Humoral immune response to the E7 protein of bovine papillomavirus type 4 and identification of B-cell epitopes. , 1994, Virology.

[12]  I. Frazer,et al.  Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence , 1994, Journal of virology.

[13]  J. Kreider,et al.  Cutaneous and mucosal human papillomavirus E4 proteins form intermediate filament-like structures in epithelial cells. , 1993, Virology.

[14]  R. Schlegel,et al.  The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein , 1993, Journal of virology.

[15]  G. Grindlay,et al.  Prophylactic and therapeutic vaccination against a mucosal papillomavirus. , 1993, The Journal of general virology.

[16]  W. Pennie,et al.  Analysis of the transforming functions of bovine papillomavirus type 4. , 1993, Virology.

[17]  I. Frazer,et al.  Synthesis and assembly of infectious bovine papillomavirus particles in vitro. , 1993, The Journal of general virology.

[18]  M. Hagensee,et al.  Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins , 1993, Journal of virology.

[19]  T Takahashi,et al.  Prognostic significance of p53 mutations and 3p deletions in primary resected non-small cell lung cancer. , 1993, Cancer research.

[20]  D. Lowy,et al.  Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Campo,et al.  Association of bovine papillomavirus type 2 and bracken fern with bladder cancer in cattle. , 1992, Cancer research.

[22]  P. Arstila,et al.  Expression of the L2 and E7 genes of the human papillomavirus type 16 in female genital dysplasias. , 1992, American Journal of Pathology.

[23]  C. Burrell,et al.  Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. , 1992, The Journal of general virology.

[24]  N. Jareborg,et al.  Localization of bovine papillomavirus type 1 E5 protein to transformed basal keratinocytes and permissive differentiated cells in fibropapilloma tissue. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Rogel-Gaillard,et al.  Human papillomavirus type 1 E4 proteins differing by their N-terminal ends have distinct cellular localizations when transiently expressed in vitro , 1992, Journal of virology.

[26]  M. Stanley,et al.  Human papillomavirus 16 E7 protein is associated with the nuclear matrix. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L. Crawford,et al.  Specific interaction between HPV-16 E1–E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network , 1991, Nature.

[28]  T. Andrésson,et al.  Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases , 1991, Nature.

[29]  W. A. Yeudall,et al.  Malignant transformation of a papilloma induced by bovine papillomavirus type 4 in the nude mouse renal capsule. , 1991, The Journal of general virology.

[30]  W. Pennie,et al.  The B subgroup bovine papillomaviruses lack an identifiable E6 open reading frame , 1991, Molecular carcinogenesis.

[31]  W. Pennie,et al.  Cooperation between bovine papillomavirus type 4 and ras in the morphological transformation of primary bovine fibroblasts. , 1990, The Journal of general virology.

[32]  Steven Wolinsky,et al.  Infectious cycle of human papillomavirus type 11 in human foreskin xenografts in nude mice , 1990, Journal of virology.

[33]  A. Bradley,et al.  Induction of virus-producing tumours in athymic nude mice by bovine papillomavirus type 4 , 1989, The Veterinary Record.

[34]  R. Rippe,et al.  Identification and characterization of the BPV-2 L2 protein. , 1989, Virology.

[35]  M. Willingham,et al.  The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. , 1989, Virology.

[36]  N. Kiviat,et al.  Detection of human papillomavirus capsid antigens in various squamous epithelial lesions using antibodies directed against the L1 and L2 open reading frames. , 1988, Virology.

[37]  J. Doorbar,et al.  Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a , 1987, Journal of virology.

[38]  F. Wettstein,et al.  The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein , 1987, Journal of virology.

[39]  J. Doorbar,et al.  Identification of the human papilloma virus‐1a E4 gene products. , 1986, The EMBO journal.

[40]  M. Campo,et al.  The presence of bovine papillomavirus type 4 DNA is not required for the progression to, or the maintenance of, the malignant state in cancers of the alimentary canal in cattle. , 1985, The EMBO journal.

[41]  R. Schlegel,et al.  Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. , 1985, The American journal of pathology.

[42]  Wolfgang Mayer,et al.  Structure and transcription of human papillomavirus sequences in cervical carcinoma cells , 1985, Nature.

[43]  W. Jarrett The natural history of bovine papillomavirus infections , 1985 .

[44]  M. Campo,et al.  A novel bovine papillomavirus (BPV-6) causing true epithelial papillomas of the mammary gland skin: a member of a proposed new BPV subgroup. , 1984, Virology.