High-resolution Fly-over Beamforming Using a Small Practical Array

The paper describes a commercially available fly-over beamforming system based on methodologies already published, but using an array that was designed for quick and precise deployment on a concrete runway rather than for minimum sidelobe level. Time domain tracking Delay And Sum (DAS) beamforming is the first processing step, followed by Deconvolution in the frequency domain to reduce sidelobes, enhance resolution, and get absolute scaling of the source maps. The system has been used for a series of fly-over measurements on a Business Jet type MU300 from Mitsubishi Heavy Industries. Results from a couple of these measurements are presented: Contribution spectra from selected areas on the aircraft to the sound pressure level at the array are compared against the total sound pressure spectrum measured by the array. One major aim of the paper is to verify that the system performs well although the array was designed with quick deployment as a main criterion. The results are very encouraging. A second aim is to elaborate on the handling of the array shading function in connection with the calculation of the Point Spread Function (PSF) used in deconvolution. Recent publications have used a simple formula to compensate for Doppler effects for the case of flat broadband spectra. A more correct formula is derived in the present paper, covering also a Doppler correction to be made in the shading function, when that function is used in the PSF calculation.