Comparison of prokaryotes between Mount Everest and the Mariana Trench

[1]  E. Forte,et al.  Antarctic Salt-Cones: An Oasis of Microbial Life? The Example of Boulder Clay Glacier (Northern Victoria Land) , 2022, Microorganisms.

[2]  Songnian Hu,et al.  A genome and gene catalog of glacier microbiomes , 2022, Nature Biotechnology.

[3]  Xi Xiao,et al.  Composition and Ecological Roles of the Core Microbiome along the Abyssal-Hadal Transition Zone Sediments of the Mariana Trench , 2022, Microbiology spectrum.

[4]  Yuu Hirose,et al.  Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite , 2022, Microbiome.

[5]  P. Mara,et al.  Microbiomes in the Challenger Deep slope and bottom-axis sediments , 2022, Nature Communications.

[6]  Shi-chang Kang,et al.  Supplementary material to "A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers" , 2022, Earth System Science Data.

[7]  F. Chen,et al.  Novel Viral Communities Potentially Assisting in Carbon, Nitrogen, and Sulfur Metabolism in the Upper Slope Sediments of Mariana Trench , 2022, mSystems.

[8]  Haiwei Luo,et al.  Prochlorococcus have low global mutation rate and small effective population size , 2021, Nature Ecology & Evolution.

[9]  Luis Pedro Coelho,et al.  Towards the biogeography of prokaryotic genes , 2021, Nature.

[10]  Weishu Zhao,et al.  The Capability of Utilizing Abiotic Enantiomers of Amino Acids by Halomonas sp. LMO_D1 Derived From the Mariana Trench , 2021, Frontiers in Astronomy and Space Sciences.

[11]  W. Shu,et al.  Microbial diversity in extreme environments , 2021, Nature Reviews Microbiology.

[12]  Geng Tian,et al.  Evaluation of the MGISEQ-2000 Sequencing Platform for Illumina Target Capture Sequencing Libraries , 2021, Frontiers in Genetics.

[13]  D. Scanlan,et al.  Acrylate protects a marine bacterium from grazing by a ciliate predator , 2021, Nature Microbiology.

[14]  E. Mosley‐Thompson,et al.  Glacier ice archives nearly 15,000-year-old microbes and phages , 2021, Microbiome.

[15]  S. Louca,et al.  The rates of global bacterial and archaeal dispersal , 2021, The ISME Journal.

[16]  Jia Li,et al.  Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep , 2021, Genome Biology.

[17]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[18]  Indrajeet Patil,et al.  ggsignif: R Package for Displaying Significance Brackets for 'ggplot2' , 2021 .

[19]  Qi-Long Qin,et al.  Oxidation of trimethylamine to trimethylamine N-oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage , 2021, Science Advances.

[20]  M. Fukui,et al.  Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. , 2021, Systematic and applied microbiology.

[21]  M. Guglielmin,et al.  Prokaryotic Diversity and Metabolically Active Communities in Brines from Two Perennially Ice-Covered Antarctic Lakes. , 2021, Astrobiology.

[22]  J. Biddle,et al.  Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin , 2021, ISME Communications.

[23]  Xiang Xiao,et al.  Hydrostatic pressure is the universal key driver of microbial evolution in the deep ocean and beyond. , 2021, Environmental microbiology reports.

[24]  Haiwei Luo,et al.  Unexpectedly high mutation rate of a deep-sea hyperthermophilic anaerobic archaeon , 2020, The ISME Journal.

[25]  J. Fuhrman,et al.  Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns , 2020, Proceedings of the National Academy of Sciences.

[26]  J. Priscu,et al.  Glacial Ecosystems , 2021 .

[27]  Harald R. Gruber-Vodicka,et al.  phyloFlash: Rapid Small-Subunit rRNA Profiling and Targeted Assembly from Metagenomes , 2020, mSystems.

[28]  Xiaohua Zhang,et al.  Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments , 2020, Nature Communications.

[29]  T. Morvan,et al.  A comprehensive dataset on nitrate, Nitrite and dissolved organic carbon leaching losses from a 4-year Lysimeter study , 2020, Data in brief.

[30]  Yanxu Zhang,et al.  Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna , 2020, Nature Communications.

[31]  Donovan H. Parks,et al.  A complete domain-to-species taxonomy for Bacteria and Archaea , 2020, Nature Biotechnology.

[32]  P. Yancey Cellular responses in marine animals to hydrostatic pressure. , 2020, Journal of experimental zoology. Part A, Ecological and integrative physiology.

[33]  P. Bork,et al.  Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity , 2020, The ISME Journal.

[34]  Amy K. Schmid,et al.  SnapShot: Microbial Extremophiles , 2020, Cell.

[35]  S. Charette,et al.  Annual bacterial community cycle in a seasonally ice‐covered river reflects environmental and climatic conditions , 2020, Limnology and Oceanography.

[36]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[37]  K. Takai Recent Topics on Deep-Sea Microbial Communities in Microbes and Environments , 2019, Microbes and environments.

[38]  Xiaohua Zhang,et al.  Biogenic production of DMSP and its degradation to DMS—their roles in the global sulfur cycle , 2019, Science China Life Sciences.

[39]  A. Shade,et al.  A global survey of arsenic-related genes in soil microbiomes , 2019, BMC Biology.

[40]  V. Acharya,et al.  Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. , 2019, Genomics.

[41]  Guoyong Yan,et al.  Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation , 2019, Nature Ecology & Evolution.

[42]  Mingchao Yu,et al.  Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench , 2019, Microbiome.

[43]  Hiroyuki Ogata,et al.  KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold , 2019, bioRxiv.

[44]  Feng Li,et al.  MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies , 2019, PeerJ.

[45]  Nancy Merino,et al.  Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context , 2019, Front. Microbiol..

[46]  Xiaohua Zhang,et al.  Novel Insights Into Bacterial Dimethylsulfoniopropionate Catabolism in the East China Sea , 2018, Front. Microbiol..

[47]  Yihui Xie,et al.  knitr: A Comprehensive Tool for Reproducible Research in R , 2018, Implementing Reproducible Research.

[48]  Zhuang Han,et al.  Periodic and Spatial Spreading of Alkanes and Alcanivorax Bacteria in Deep Waters of the Mariana Trench , 2018, Applied and Environmental Microbiology.

[49]  Alexander J Probst,et al.  Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy , 2017, Nature Microbiology.

[50]  T. Fukui,et al.  Microbial Diversity in Sediments from the Bottom of the Challenger Deep, the Mariana Trench , 2018, Microbes and environments.

[51]  Michaeline B. N. Albright,et al.  Function and functional redundancy in microbial systems , 2018, Nature Ecology & Evolution.

[52]  E. Allen,et al.  Vertically distinct microbial communities in the Mariana and Kermadec trenches , 2018, PloS one.

[53]  S. Amalfitano,et al.  Bacterial community structure along the subtidal sandy sediment belt of a high Arctic fjord (Kongsfjorden, Svalbard Islands). , 2018, The Science of the total environment.

[54]  R. Amann,et al.  Unveiling the enigma of refractory carbon in the ocean , 2018 .

[55]  B. Mueller Preliminary trace element analysis of arsenic in Nepalese groundwater may pinpoint its origin , 2018, Environmental Earth Sciences.

[56]  C. Santini,et al.  High Hydrostatic Pressure Inducible Trimethylamine N-Oxide Reductase Improves the Pressure Tolerance of Piezosensitive Bacteria Vibrio fluvialis , 2018, Front. Microbiol..

[57]  E. Bremer,et al.  Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes , 2018, Environmental microbiology.

[58]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[59]  J. Banfield,et al.  dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication , 2017, The ISME Journal.

[60]  H. Ochman,et al.  The Evolution of Bacterial Genome Architecture , 2017, Front. Genet..

[61]  Xuefa Shi,et al.  Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: Implication for carbon cycle and burial in hadal trenches , 2017 .

[62]  Gaël Many,et al.  Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard) , 2016 .

[63]  Ya Ping Liu,et al.  Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains , 2016, Scientific Reports.

[64]  G. Tyson,et al.  Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. , 2016, Environmental microbiology.

[65]  F. Inagaki,et al.  A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments , 2016, Front. Microbiol..

[66]  S. de Vries,et al.  Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle* , 2016, The Journal of Biological Chemistry.

[67]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[68]  D. Bartlett,et al.  Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench , 2016, Front. Microbiol..

[69]  C. Mayer,et al.  Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces , 2016, The ISME Journal.

[70]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[71]  Blake A. Simmons,et al.  MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets , 2016, Bioinform..

[72]  Yan Zhang,et al.  Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria , 2016, The ISME Journal.

[73]  Yuguang Zhou,et al.  Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice. , 2015, International journal of systematic and evolutionary microbiology.

[74]  A. Anesio,et al.  Microbial diversity on Icelandic glaciers and ice caps , 2015, Front. Microbiol..

[75]  R. Sletten,et al.  Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet. , 2015, Environmental microbiology.

[76]  N. Yoshida,et al.  Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth , 2015, Proceedings of the National Academy of Sciences.

[77]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[78]  V. Gladyshev,et al.  Selenoproteins: molecular pathways and physiological roles. , 2014, Physiological reviews.

[79]  Brian Bushnell,et al.  BBMap: A Fast, Accurate, Splice-Aware Aligner , 2014 .

[80]  K. Konstantinidis,et al.  Bypassing Cultivation To Identify Bacterial Species: Culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species , 2014 .

[81]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[82]  D. Canfield,et al.  High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth , 2013 .

[83]  K. Konstantinidis,et al.  Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications , 2012, Proceedings of the National Academy of Sciences.

[84]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[85]  G. Barker,et al.  Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet , 2012, The ISME Journal.

[86]  P. Bonasoni,et al.  Environmental conditions at the South Col of Mount Everest and their impact on hypoxia and hypothermia experienced by mountaineers , 2012, Extreme Physiology & Medicine.

[87]  Edward C. Uberbacher,et al.  Gene and translation initiation site prediction in metagenomic sequences , 2012, Bioinform..

[88]  T. Thomas,et al.  Bacterial community assembly based on functional genes rather than species , 2011, Proceedings of the National Academy of Sciences.

[89]  T. Yao,et al.  Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier , 2011, Extremophiles.

[90]  G. Griffith,et al.  Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard , 2011, The ISME Journal.

[91]  Guangli Yang,et al.  Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. , 2010, Microbiological research.

[92]  Eduardo P. C. Rocha,et al.  The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics , 2010, PLoS genetics.

[93]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[94]  T. Yao,et al.  Bacterial diversity in the snow over Tibetan Plateau Glaciers , 2009, Extremophiles.

[95]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[96]  Jiawen Ren,et al.  Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. , 2008, The Science of the total environment.

[97]  Peer Bork,et al.  Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer , 2007, Science.

[98]  W. Verstraete,et al.  Quantifying Community Dynamics of Nitrifiers in Functionally Stable Reactors , 2007, Applied and Environmental Microbiology.

[99]  D. Qin,et al.  Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn , 2007 .

[100]  K. Shichang,et al.  Microbial community structure in major habitats above 6000 m on Mount Everest , 2007 .

[101]  J. Priscu,et al.  Bacterial Diversity Associated with Blood Falls, a Subglacial Outflow from the Taylor Glacier, Antarctica , 2007, Applied and Environmental Microbiology.

[102]  S. Tringe,et al.  Quantitative Phylogenetic Assessment of Microbial Communities in Diverse Environments , 2007, Science.

[103]  T. Yao,et al.  Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. , 2006, FEMS microbiology letters.

[104]  K. Kaštovská,et al.  Microbial Communities on Glacier Surfaces in Svalbard: Impact of Physical and Chemical Properties on Abundance and Structure of Cyanobacteria and Algae , 2006, Microbial Ecology.

[105]  T. Yao,et al.  Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest , 2006 .

[106]  K. Hattori,et al.  Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study , 2005 .

[107]  V. Miteva,et al.  Detection and Isolation of Ultrasmall Microorganisms from a 120,000-Year-Old Greenland Glacier Ice Core , 2005, Applied and Environmental Microbiology.

[108]  J. Kohler,et al.  The High Arctic glacial ecosystem: new insights from nutrient budgets , 2005 .

[109]  L. Øvreås,et al.  Prokaryotic Diversity--Magnitude, Dynamics, and Controlling Factors , 2002, Science.

[110]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[111]  D. White,et al.  Preface to special issue on Sphingomonas , 1999, Journal of Industrial Microbiology and Biotechnology.

[112]  J. Neff Ecotoxicology of arsenic in the marine environment , 1997 .

[113]  J. Battista,et al.  Against all odds: the survival strategies of Deinococcus radiodurans. , 1997, Annual review of microbiology.

[114]  M. Riley,et al.  Evolution of the bacterial genome. , 1978, Annual review of microbiology.