The Data-Hiding Capacity of Image Sources

An information-theoretic model for image watermarking and data hiding is proposed in this paper. Recent theoretical results are used to characterize the fundamental capacity limits of image watermarking and data-hiding systems. Capacity is determined by the statistical model used for the host image, by the distortion constraints on the data hider and the attacker, and by the information available to the data hider, to the attacker, and to the decoder. We consider autoregressive, block-DCT and wavelet statistical models for images and compute datahiding capacity for compressed and uncompressed host-image sources. Closed-form expressions are obtained under sparse-model approximations. Models for geometric attacks and distortion measures that are invariant to such attacks are considered.

[1]  Benoît Macq,et al.  Special issue on identification and protection of multimedia information , 1999 .

[2]  Kannan Ramchandran,et al.  Capacity issues in digital image watermarking , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[3]  Frank Bossen,et al.  Digital signature of color images using amplitude modulation , 1997, Electronic Imaging.

[4]  Mehmet Kivanc Mihcak,et al.  ITERATIVELY DECODABLE CODES FOR WATERMARKING APPLICATIONS , 2000 .

[5]  Walter Bender,et al.  Techniques for Data Hiding , 1996, IBM Syst. J..

[6]  Pierre Moulin,et al.  An information-theoretic model for image watermarking and data hiding , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[7]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[8]  Michael T. Orchard,et al.  Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework , 1997, Proceedings DCC '97. Data Compression Conference.

[9]  Michael W. Marcellin,et al.  Comparison of different methods of classification in subband coding of images , 1997, IEEE Trans. Image Process..

[10]  Jean-François Delaigle,et al.  Improving data hiding by using convolutional codes and soft-decision decoding , 2000, Electronic Imaging.

[11]  Joseph A. O'Sullivan,et al.  Information-theoretic analysis of watermarking , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[12]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[13]  Kannan Ramchandran,et al.  Adaptive wavelet packet image coding using an estimation-quantization framework , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[14]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[15]  Prakash Narayan,et al.  Reliable Communication Under Channel Uncertainty , 1998, IEEE Trans. Inf. Theory.

[16]  Christian Cachin,et al.  An information-theoretic model for steganography , 1998, Inf. Comput..

[17]  Mark Ettinger,et al.  Steganalysis and Game Equilibria , 1998, Information Hiding.

[18]  Robert J. Safranek,et al.  Signal compression based on models of human perception , 1993, Proc. IEEE.

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  Kannan Ramchandran,et al.  Robust optimization solution to the data hiding problem using distributed source coding principles , 2000, Electronic Imaging.

[21]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[22]  Pierre Moulin,et al.  Statistical image restoration based on adaptive wavelet models , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[23]  J.A. O'Sullivan,et al.  Information theoretic analysis of steganography , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[24]  Martin Vetterli,et al.  Rate-distortion analysis of spike processes , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[25]  Antonio Ortega,et al.  Rate-distortion methods for image and video compression , 1998, IEEE Signal Process. Mag..

[26]  Edward J. Delp,et al.  Perceptual watermarks for digital images and video , 1999, Electronic Imaging.

[27]  Mauro Barni,et al.  Capacity of the watermark channel: how many bits can be hidden within a digital image? , 1999, Electronic Imaging.

[28]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[29]  Amos Lapidoth,et al.  The Gaussian watermarking game , 2000, IEEE Trans. Inf. Theory.

[30]  Frank Hartung,et al.  Multimedia watermarking techniques , 1999, Proc. IEEE.

[31]  Bernd Girod,et al.  Robustness of a blind image watermarking scheme , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[32]  Gregory W. Wornell,et al.  Preprocessed and postprocessed quantization index modulation methods for digital watermarking , 2000, Electronic Imaging.

[33]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[34]  Ali N. Akansu,et al.  Information theoretic bounds for data hiding in compressed images , 1998, 1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175).

[35]  Ingemar J. Cox,et al.  Secure spread spectrum watermarking for multimedia , 1997, IEEE Trans. Image Process..

[36]  Prakash Narayan,et al.  Gaussian arbitrarily varying channels , 1987, IEEE Trans. Inf. Theory.

[37]  Markus G. Kuhn,et al.  Information hiding-a survey , 1999, Proc. IEEE.