Phylogenomic analysis of Pristionchus nematodes with the focus on orphan genes

[1]  R. Sommer,et al.  Phylotranscriptomics of Pristionchus Nematodes Reveals Parallel Gene Loss in Six Hermaphroditic Lineages , 2018, Current Biology.

[2]  Brian R Johnson Taxonomically Restricted Genes Are Fundamental to Biology and Evolution , 2018, Front. Genet..

[3]  R. Sommer,et al.  Deep taxon sampling reveals the evolutionary dynamics of novel gene families in Pristionchus nematodes , 2018, Genome research.

[4]  R. Sommer,et al.  Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation , 2018, Genome research.

[5]  E. Bornberg-Bauer,et al.  Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover , 2018, Nature Ecology & Evolution.

[6]  Baojun Wu,et al.  Tracing the De Novo Origin of Protein-Coding Genes in Yeast , 2018, mBio.

[7]  E. Bornberg-Bauer,et al.  Origins and structural properties of novel and de novo protein domains during insect evolution , 2018, The FEBS journal.

[8]  R. Sommer,et al.  A Developmental Switch Generating Phenotypic Plasticity Is Part of a Conserved Multi-gene Locus. , 2018, Cell reports.

[9]  Gene refashioning through innovative shifting of reading frames in mosses , 2018, Nature Communications.

[10]  Kenneth L. McNally,et al.  Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza , 2018, Nature Genetics.

[11]  Cristel G. Thomas,et al.  Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins , 2018, Science.

[12]  L. Hurst,et al.  Faster Evolving Primate Genes Are More Likely to Duplicate , 2017, Molecular biology and evolution.

[13]  Felipe Zapata,et al.  Pairwise comparisons across species are problematic when analyzing functional genomic data , 2018, Proceedings of the National Academy of Sciences.

[14]  C. Rödelsperger Comparative Genomics of Gene Loss and Gain in Caenorhabditis and Other Nematodes. , 2018, Methods in molecular biology.

[15]  M. E. Santos,et al.  Taxon-restricted genes at the origin of a novel trait allowing access to a new environment , 2017, Science.

[16]  R. Sommer,et al.  Single-Molecule Sequencing Reveals the Chromosome-Scale Genomic Architecture of the Nematode Model Organism Pristionchus pacificus. , 2017, Cell reports.

[17]  Adrian J. Verster,et al.  Taxonomically Restricted Genes with Essential Functions Frequently Play Roles in Chromosome Segregation in Caenorhabditis elegans and Saccharomyces cerevisiae , 2017, G3: Genes, Genomes, Genetics.

[18]  M. Albà,et al.  New Genes and Functional Innovation in Mammals , 2017, bioRxiv.

[19]  Kevin R. Thornton,et al.  Tandem duplications lead to novel expression patterns through exon shuffling in Drosophila yakuba , 2017, PLoS genetics.

[20]  Diethard Tautz,et al.  Random sequences are an abundant source of bioactive RNAs or peptides , 2017, Nature Ecology &Evolution.

[21]  J. Masel,et al.  Young Genes are Highly Disordered as Predicted by the Preadaptation Hypothesis of De Novo Gene Birth , 2017, Nature Ecology &Evolution.

[22]  Lewis Stevens,et al.  Caenorhabditis monodelphis sp. n.: defining the stem morphology and genomics of the genus Caenorhabditis , 2017 .

[23]  E. Bornberg-Bauer,et al.  Fact or fiction: updates on how protein-coding genes might emerge de novo from previously non-coding DNA , 2017, F1000Research.

[24]  B. Degnan,et al.  Co-Option and De Novo Gene Evolution Underlie Molluscan Shell Diversity , 2017, Molecular biology and evolution.

[25]  C. Rödelsperger,et al.  First insights into the nature and evolution of antisense transcription in nematodes , 2016, BMC Evolutionary Biology.

[26]  R. Sommer,et al.  Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity , 2016, Nature Communications.

[27]  J. Hagmann,et al.  On the Origin of De Novo Genes in Arabidopsis thaliana Populations , 2016, Genome biology and evolution.

[28]  David M. Curran,et al.  Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option , 2016, BMC Genomics.

[29]  Christian Rödelsperger,et al.  Are orphan genes protein-coding, prediction artifacts, or non-coding RNAs? , 2016, BMC Bioinformatics.

[30]  M. Martindale,et al.  Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis , 2016, BMC Evolutionary Biology.

[31]  Tetsuya Hayashi,et al.  The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes , 2016, Nature Genetics.

[32]  R. Giblin-Davis,et al.  Large-scale diversification without genetic isolation in nematode symbionts of figs , 2016, Science Advances.

[33]  J. Ryan,et al.  The evolution of animal genomes. , 2015, Current opinion in genetics & development.

[34]  E. Bornberg-Bauer,et al.  Emergence of de novo proteins from 'dark genomic matter' by 'grow slow and moult'. , 2015, Biochemical Society transactions.

[35]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[36]  A. McLysaght,et al.  New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  Gabriel V. Markov,et al.  Ancient gene duplications have shaped developmental stage-specific expression in Pristionchus pacificus , 2015, BMC Evolutionary Biology.

[38]  Ronald Bontrop,et al.  Origins of De Novo Genes in Human and Chimpanzee , 2015, PLoS genetics.

[39]  C. Rödelsperger,et al.  Microevolution of Duplications and Deletions and Their Impact on Gene Expression in the Nematode Pristionchus pacificus , 2015, PloS one.

[40]  Cristel G. Thomas,et al.  Correction: Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes , 2015, PLoS genetics.

[41]  R. Sommer,et al.  The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation , 2015, PLoS genetics.

[42]  Katharina J. Hoff,et al.  Current methods for automated annotation of protein-coding genes. , 2015, Current opinion in insect science.

[43]  R. Sommer,et al.  PRISTIONCHUS PACIFICUS - A NEMATODE MODEL FOR COMPARATIVE AND EVOLUTIONARY BIOLOGY , 2015 .

[44]  A. Clark,et al.  Genomics of Ecological Adaptation in Cactophilic Drosophila , 2014, Genome biology and evolution.

[45]  Frédéric J. J. Chain,et al.  Extensive Copy-Number Variation of Young Genes across Stickleback Populations , 2014, PLoS genetics.

[46]  Jose Lugo-Martinez,et al.  Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies , 2014, PLoS Comput. Biol..

[47]  D. Tautz The Discovery of De Novo Gene Evolution , 2014, Perspectives in biology and medicine.

[48]  R. Sommer,et al.  Genome-wide analysis of trans-splicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons , 2014, RNA.

[49]  Ziheng Yang,et al.  Molecular Evolution: A Statistical Approach , 2014 .

[50]  A. Elofsson,et al.  Orphans and new gene origination, a structural and evolutionary perspective. , 2014, Current opinion in structural biology.

[51]  M. Albà,et al.  Long non-coding RNAs as a source of new peptides , 2014, eLife.

[52]  Ole Kristian Ekseth,et al.  orthAgogue: an agile tool for the rapid prediction of orthology relations , 2014, Bioinform..

[53]  Li Zhao,et al.  Origin and Spread of de Novo Genes in Drosophila melanogaster Populations , 2014, Science.

[54]  C. Kosiol,et al.  The life cycle of Drosophila orphan genes , 2014, eLife.

[55]  Christoph Dieterich,et al.  Characterization of Genetic Diversity in the Nematode Pristionchus pacificus from Population-Scale Resequencing Data , 2014, Genetics.

[56]  R. Sommer,et al.  Opposing Forces of A/T-Biased Mutations and G/C-Biased Gene Conversions Shape the Genome of the Nematode Pristionchus pacificus , 2014, Genetics.

[57]  R. Sommer,et al.  Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus , 2014, Development Genes and Evolution.

[58]  Nicholas W. VanKuren,et al.  New gene evolution: little did we know. , 2013, Annual review of genetics.

[59]  Ralf J. Sommer,et al.  A Developmental Switch Coupled to the Evolution of Plasticity Acts through a Sulfatase , 2013, Cell.

[60]  P. Grassé Evolution of Living Organisms: Evidence for a New Theory of Transformation , 2013 .

[61]  Josephine A. Reinhardt,et al.  De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences , 2013, PLoS genetics.

[62]  M. Long,et al.  New genes as drivers of phenotypic evolution , 2013, Nature Reviews Genetics.

[63]  M. Albà,et al.  Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. , 2013, Molecular biology and evolution.

[64]  A. Valencia,et al.  Late-replicating CNVs as a source of new genes , 2013, Biology Open.

[65]  Michael T. McManus,et al.  Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs , 2013, PLoS genetics.

[66]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[67]  N. Kanzaki,et al.  Description of the bark beetle associated nematodes Micoletzkya masseyi n. sp. and M. japonica n. sp. (Nematoda: Diplogastridae) , 2013 .

[68]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[69]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[70]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[71]  D. Tautz,et al.  Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution , 2013, BMC Genomics.

[72]  Audrey M. Michel,et al.  Observation of dually decoded regions of the human genome using ribosome profiling data , 2012, Genome research.

[73]  R. Sommer,et al.  System Wide Analysis of the Evolution of Innate Immunity in the Nematode Model Species Caenorhabditis elegans and Pristionchus pacificus , 2012, PloS one.

[74]  R. Sommer,et al.  Expressional and functional variation of horizontally acquired cellulases in the nematode Pristionchus pacificus. , 2012, Gene.

[75]  R. Sommer,et al.  Phosphoproteome of Pristionchus pacificus Provides Insights into Architecture of Signaling Networks in Nematode Models* , 2012, Molecular & Cellular Proteomics.

[76]  Andreas Wagner,et al.  Evolution of Viral Proteins Originated De Novo by Overprinting , 2012, Molecular biology and evolution.

[77]  Daniël P. Melters,et al.  Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis , 2012, Chromosome Research.

[78]  W. Haerty,et al.  Rapid evolution of low complexity sequences and single amino acid repeats across Eukaryotes. , 2012 .

[79]  D. Hartl,et al.  Rapid evolution via chimeric genes , 2012 .

[80]  R. Sommer,et al.  Description of Three Pristionchus Species (Nematoda: Diplogastridae) from Japan that Form a Cryptic Species Complex with the Model Organism P. pacificus , 2012, Zoological science.

[81]  M. Yandell,et al.  A beginner's guide to eukaryotic genome annotation , 2012, Nature Reviews Genetics.

[82]  Peter C. Dolan,et al.  Variation in Base-Substitution Mutation in Experimental and Natural Lineages of Caenorhabditis Nematodes , 2012, Genome biology and evolution.

[83]  Macarena Toll-Riera,et al.  Role of low-complexity sequences in the formation of novel protein coding sequences. , 2012, Molecular biology and evolution.

[84]  D. Hartl,et al.  Chimeric genes as a source of rapid evolution in Drosophila melanogaster. , 2012, Molecular biology and evolution.

[85]  R. Sommer,et al.  Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans , 2012, BMC Genomics.

[86]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[87]  Ya-ping Zhang,et al.  De Novo Origin of Human Protein-Coding Genes , 2011, PLoS genetics.

[88]  J. Masel,et al.  Putatively Noncoding Transcripts Show Extensive Association with Ribosomes , 2011, Genome biology and evolution.

[89]  D. Tautz,et al.  The evolutionary origin of orphan genes , 2011, Nature Reviews Genetics.

[90]  R. Sommer,et al.  Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects , 2011, BMC Evolutionary Biology.

[91]  B. Gaut,et al.  Factors that contribute to variation in evolutionary rate among Arabidopsis genes. , 2011, Molecular biology and evolution.

[92]  K. Kawasaki,et al.  The evolution of milk casein genes from tooth genes before the origin of mammals. , 2011, Molecular biology and evolution.

[93]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[94]  Martin Goodson,et al.  Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. , 2011, Genome research.

[95]  Alisson M. Gontijo,et al.  Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein , 2011, Nature communications.

[96]  W. Doolittle,et al.  Lateral gene transfer , 2011, Current Biology.

[97]  M. Blaxter Nematodes: The Worm and Its Relatives , 2011, PLoS biology.

[98]  Brian R Johnson,et al.  Taxonomically restricted genes are associated with the evolution of sociality in the honey bee , 2011, BMC Genomics.

[99]  Todd H. Oakley,et al.  The Ecoresponsive Genome of Daphnia pulex , 2011, Science.

[100]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[101]  D. Bartel,et al.  Formation, Regulation and Evolution of Caenorhabditis elegans 3′UTRs , 2010, Nature.

[102]  Manyuan Long,et al.  New Genes in Drosophila Quickly Become Essential , 2010, Science.

[103]  A. Wagner,et al.  Evolutionary Innovations and the Organization of Protein Functions in Genotype Space , 2010, PloS one.

[104]  L. Keller,et al.  Chromosome Size Differences May Affect Meiosis and Genome Size , 2010, Science.

[105]  R. Sommer,et al.  Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. , 2010, Genome research.

[106]  D. Hartl,et al.  Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster , 2010, Proceedings of the National Academy of Sciences.

[107]  Dmitri A. Petrov,et al.  Relaxed Purifying Selection and Possibly High Rate of Adaptation in Primate Lineage-Specific Genes , 2010, Genome biology and evolution.

[108]  T. Hughes,et al.  Most “Dark Matter” Transcripts Are Associated With Known Genes , 2010, PLoS biology.

[109]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[110]  C. Dieterich,et al.  CYNTENATOR: Progressive Gene Order Alignment of 17 Vertebrate Genomes , 2010, PloS one.

[111]  David G. Knowles,et al.  Recent de novo origin of human protein-coding genes. , 2009, Genome research.

[112]  A. Gnirke,et al.  ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads , 2009, Genome Biology.

[113]  D. Tautz,et al.  Emergence of a New Gene from an Intergenic Region , 2009, Current Biology.

[114]  T. Bosch,et al.  More than just orphans: are taxonomically-restricted genes important in evolution? , 2009, Trends in genetics : TIG.

[115]  A. Keith Dunker,et al.  Overlapping Genes Produce Proteins with Unusual Sequence Properties and Offer Insight into De Novo Protein Creation , 2009, Journal of Virology.

[116]  P. Forterre,et al.  A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes , 2009, Genome Biology.

[117]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[118]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[119]  Manyuan Long,et al.  A Rice Gene of De Novo Origin Negatively Regulates Pathogen-Induced Defense Response , 2009, PloS one.

[120]  L. Armengol,et al.  Origin of primate orphan genes: a comparative genomics approach. , 2008, Molecular biology and evolution.

[121]  T. Bosch,et al.  Characterization of taxonomically restricted genes in a phylum-restricted cell type , 2009, Genome Biology.

[122]  Christoph Dieterich,et al.  The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism , 2008, Nature Genetics.

[123]  E. Koonin,et al.  Nested genes and increasing organizational complexity of metazoan genomes. , 2008, Trends in genetics : TIG.

[124]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[125]  Huifeng Jiang,et al.  De Novo Origination of a New Protein-Coding Gene in Saccharomyces cerevisiae , 2008, Genetics.

[126]  A. Cutter Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. , 2008, Molecular biology and evolution.

[127]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[128]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[129]  Tomislav Domazet-Loso,et al.  A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. , 2007, Trends in genetics : TIG.

[130]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[131]  Anton Nekrutenko,et al.  A First Look at ARFome: Dual-Coding Genes in Mammalian Genomes , 2007, PLoS Comput. Biol..

[132]  Jun Wang,et al.  Identification and characterization of insect-specific proteins by genome data analysis , 2007, BMC Genomics.

[133]  A. Gulick The Chemical Formulation of Gene Structure and Gene Action , 2006 .

[134]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[135]  R. Sommer,et al.  Pristionchus pacificus: a well-rounded nematode. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[136]  R. Sommer,et al.  Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in Western Europe. , 2006, Zoology.

[137]  James H. Thomas,et al.  Analysis of Homologous Gene Clusters in Caenorhabditis elegans Reveals Striking Regional Cluster Domains , 2006, Genetics.

[138]  Alisha K Holloway,et al.  Recently Evolved Genes Identified From Drosophila yakuba and D. erecta Accessory Gland Expressed Sequence Tags , 2005, Genetics.

[139]  O. Rosenberg Chromosomenzahl, -Form und -Individualität im Pflanzenreiche , 1919, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[140]  Oliver Hobert,et al.  A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA , 2005, Development.

[141]  Anton Nekrutenko,et al.  Oscillating Evolution of a Mammalian Locus with Overlapping Reading Frames: An XLαs/ALEX Relay , 2005, PLoS genetics.

[142]  Izabela Makalowska,et al.  Overlapping genes in vertebrate genomes , 2005, Comput. Biol. Chem..

[143]  Takashi Miyata,et al.  Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application , 1980, Journal of Molecular Evolution.

[144]  H. Muller The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere , 1935, Genetica.

[145]  E. Koonin Orthologs, paralogs, and evolutionary genomics. , 2005, Annual review of genetics.

[146]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[147]  Jeroen Raes,et al.  Duplication and divergence: the evolution of new genes and old ideas. , 2004, Annual review of genetics.

[148]  Neil Hall,et al.  A transcriptomic analysis of the phylum Nematoda , 2004, Nature Genetics.

[149]  A. Kornblihtt,et al.  Multiple links between transcription and splicing. , 2004, RNA.

[150]  H. Ellegren Microsatellites: simple sequences with complex evolution , 2004, Nature Reviews Genetics.

[151]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[152]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[153]  M. Lynch,et al.  The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome. , 2003, Genetics.

[154]  Kevin R. Thornton,et al.  The origin of new genes: glimpses from the young and old , 2003, Nature Reviews Genetics.

[155]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[156]  M. Thellmann,et al.  The Snail-like CES-1 protein of C. elegans can block the expression of theBH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins , 2003, Development.

[157]  C. Fraser,et al.  Phylogenomics: Intersection of Evolution and Genomics , 2003, Science.

[158]  C. Aquadro,et al.  The evolutionary analysis of "orphans" from the Drosophila genome identifies rapidly diverging and incorrectly annotated genes. , 2001, Genetics.

[159]  J. Hugot,et al.  Biodiversity in helminths and nematodes as a field of study: an overview , 2001 .

[160]  David S. Eisenberg,et al.  Finding families for genomic ORFans , 1999, Bioinform..

[161]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[162]  D. Tautz,et al.  A screen for fast evolving genes from Drosophila. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[163]  J. Brookfield Genetic redundancy: Screening for selection in yeast , 1997, Current Biology.

[164]  A. Devries,et al.  Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[165]  B. Dujon The yeast genome project: what did we learn? , 1996, Trends in genetics : TIG.

[166]  C Sander,et al.  Bioinformatics and the discovery of gene function. , 1996, Trends in genetics : TIG.

[167]  R. Sommer,et al.  Morphological, genetic and molecular description of Pristionchus pacificus sp. n. (Nematoda : Neodiplogastridae ) , 1996 .

[168]  P. Keese,et al.  Origins of genes: "big bang" or continuous creation? , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[169]  B. Dujon,et al.  The complete DNA sequence of yeast chromosome III , 1992, Nature.

[170]  D. Penny The comparative method in evolutionary biology , 1992 .

[171]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[172]  C. Luo,et al.  A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. , 1985, Molecular biology and evolution.

[173]  S. Ohno,et al.  Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[174]  J. L. King,et al.  Evolutionary nucleotide replacements in DNA , 1979, Nature.

[175]  M. Kafatos,et al.  Mass loss, long-period variables, and the formation of circumnebular shells , 1977 .

[176]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[177]  M. Kimura Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution , 1977, Nature.

[178]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[179]  S. G. Stephens Possible Significance of Duplication in Evolution , 1951 .

[180]  C. W. Metz Duplication of Chromosome Parts as a Factor in Evolution , 1947, The American Naturalist.

[181]  Calvin B. Bridges,et al.  SALIVARY CHROMOSOME MAPSWith a Key to the Banding of the Chromosomes of Drosophila Melanogaster , 1935 .

[182]  W. E. Ritter AS TO THE CAUSES OF EVOLUTION. , 1923, Science.

[183]  R. Goldschmidt,et al.  The material basis of evolution , 1941 .

[184]  Y. Kuwada Maiosis in the Pollen Mother Cells of Zea Mays L. (With Plate V.) , 1911 .