Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution

[1]  Z. Mi,et al.  III-Nitride Nanostructures: Emerging Applications for Micro-LEDs, Ultraviolet Photonics, Quantum Optoelectronics, and Artificial Photosynthesis , 2022, Progress in Quantum Electronics.

[2]  Thomas W. Hamann,et al.  Crystallographic Effects of GaN Nanostructures in Photoelectrochemical Reaction. , 2022, Nano letters.

[3]  Xiaoping Shen,et al.  Growth of MoS2 nanosheets on M@N-doped carbon particles (M = Co, Fe or CoFe Alloy) as an efficient electrocatalyst toward hydrogen evolution reaction , 2022 .

[4]  Ho Won Jang,et al.  Bi catalysts supported on GaN nanowires toward efficient photoelectrochemical CO2 reduction , 2022, Journal of Materials Chemistry A.

[5]  Chunming Yang,et al.  Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater , 2021, Applied Catalysis B: Environmental.

[6]  N. Lewis,et al.  Investigations of the stability of etched or platinized p-InP(100) photocathodes for solar-driven hydrogen evolution in acidic or alkaline aqueous electrolytes , 2021, Energy & Environmental Science.

[7]  Shichun Mu,et al.  Ultralow Ru Incorporated Amorphous Cobalt-Based Oxides for High-Current-Density Overall Water Splitting in Alkaline and Seawater Media. , 2021, Small.

[8]  Z. Mi,et al.  CuS-Decorated GaN Nanowires on Silicon Photocathodes for Converting CO2 Mixture Gas to HCOOH. , 2021, Journal of the American Chemical Society.

[9]  W. Xiao,et al.  Interfacial sp C-O-Mo Hybridization Originated High-Current Density Hydrogen Evolution. , 2021, Journal of the American Chemical Society.

[10]  A. Slattery,et al.  Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride , 2021, Advanced materials.

[11]  Yunhui Huang,et al.  Recent advances in electrocatalysts for neutral and large-current-density water electrolysis , 2021, Nano Energy.

[12]  Alexander J. Cowan,et al.  Electrolysis of low-grade and saline surface water , 2020, Nature Energy.

[13]  Honglong Xing,et al.  Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis , 2021 .

[14]  S. Pennycook,et al.  Efficient Hydrogen Evolution of Oxidized Ni‐N3 Defective Sites for Alkaline Freshwater and Seawater Electrolysis , 2020, Advanced materials.

[15]  Thomas W. Hamann,et al.  InGaN/Si Double-Junction Photocathode for Unassisted Solar Water Splitting , 2020 .

[16]  Xian Jian,et al.  Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects , 2020 .

[17]  Z. Ren,et al.  Heterogeneous Bimetallic Phosphide Ni2P‐Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting , 2020, Advanced Functional Materials.

[18]  Adam C. Nielander,et al.  Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem III–V Unassisted Solar Water Splitting , 2020 .

[19]  Ho Won Jang,et al.  Photoelectrochemical hydrogen production at neutral pH phosphate buffer solution using TiO2 passivated InAs Nanowire/p-Si heterostructure photocathode , 2020 .

[20]  Zhiyu Wang,et al.  Multilevel Hollow MXene Tailored Low‐Pt Catalyst for Efficient Hydrogen Evolution in Full‐pH Range and Seawater , 2020, Advanced Functional Materials.

[21]  J. S. Lee,et al.  Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting , 2020, Nature Communications.

[22]  G. Shafiullah,et al.  Hydrogen production for energy: An overview , 2020 .

[23]  Z. Mi,et al.  Highly efficient binary copper−iron catalyst for photoelectrochemical carbon dioxide reduction toward methane , 2020, Proceedings of the National Academy of Sciences.

[24]  G. Dreyfuss,et al.  U1 snRNP regulates cancer cell migration and invasion , 2019, bioRxiv.

[25]  F. Toma,et al.  Long-term stability studies of a semiconductor photoelectrode in three-electrode configuration , 2019, Journal of Materials Chemistry A.

[26]  Z. Ren,et al.  Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis , 2019, Nature Communications.

[27]  Z. Mi,et al.  A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis , 2019, Energy & Environmental Science.

[28]  Zhiyu Wang,et al.  Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater , 2019, Advanced Energy Materials.

[29]  Kang Jiang,et al.  Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction , 2019, Nature Communications.

[30]  P. Strasser,et al.  Direct Electrolytic Splitting of Seawater: Opportunities and Challenges , 2019, ACS Energy Letters.

[31]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[32]  O. Voznyy,et al.  Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules , 2018, Nature Energy.

[33]  Yadong Li,et al.  Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction , 2018, Nature Catalysis.

[34]  Mengxin Chen,et al.  Multifunctional TiO2 overlayer for p-Si/n-CdS heterojunction photocathode with improved efficiency and stability , 2018, Nano Energy.

[35]  P. Glatzel,et al.  Photo-electrochemical hydrogen production from neutral phosphate buffer and seawater using micro-structured p-Si photo-electrodes functionalized by solution-based methods , 2018 .

[36]  Z. Mi,et al.  Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting , 2018, Nature Communications.

[37]  Z. Mi,et al.  High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures. , 2018, Nano letters.

[38]  S. Dou,et al.  Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review , 2018, Advanced Functional Materials.

[39]  Anders Hagfeldt,et al.  Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices , 2018, Nature Catalysis.

[40]  H. Ullah,et al.  Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis , 2018 .

[41]  M. Koper,et al.  Measurement of competition between oxygen evolution and chlorine evolution using rotating ring-disk electrode voltammetry , 2017, Journal of Electroanalytical Chemistry.

[42]  Joondong Kim,et al.  Photoelectrocatalytic sea water splitting using Kirkendall diffusion grown functional Co3O4 film , 2017 .

[43]  Jun Luo,et al.  Potential‐Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media , 2017, Angewandte Chemie.

[44]  S. Gul,et al.  Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. , 2017, Journal of the American Chemical Society.

[45]  Xiaolin Zheng,et al.  Stabilizing Silicon Photocathodes by Solution-Deposited Ni–Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media , 2017 .

[46]  James L. Young,et al.  Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting , 2017, Nature Energy.

[47]  M. Koper,et al.  Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes , 2017, Nature Energy.

[48]  James L. Young,et al.  A graded catalytic–protective layer for an efficient and stable water-splitting photocathode , 2017, Nature Energy.

[49]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[50]  Binying Yang,et al.  A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production , 2016 .

[51]  Xiufang Chen,et al.  Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water , 2016, Scientific Reports.

[52]  Q. Tang,et al.  Robust electrocatalysts from an alloyed Pt–Ru–M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting , 2016 .

[53]  April Brown,et al.  Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition , 2016 .

[54]  Nathan S. Lewis,et al.  Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators , 2015 .

[55]  K. Takanabe,et al.  Electrocatalytic Hydrogen Evolution under Densely Buffered Neutral pH Conditions , 2015 .

[56]  Ashish Kumar,et al.  XPS study of triangular GaN nano/micro-needles grown by MOCVD technique , 2014 .

[57]  Rui Liu,et al.  Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers , 2014 .

[58]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[59]  Diing Shenp Ang,et al.  Interfacial chemistry and valence band offset between GaN and Al2O3 studied by X-ray photoelectron spectroscopy , 2013 .

[60]  V. Stamenkovic,et al.  Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces , 2011, Science.

[61]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[62]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[63]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[64]  Shunro Fuke,et al.  Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy , 2001 .

[65]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[68]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[69]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[70]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[71]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[72]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[73]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .