Adaptive Sliding Motion Tracking Control of Piezo-Driven Flexure-Based Mechanism

This paper presents an adaptive sliding motion tracking control methodology for a flexure-based micro/nano manipulator driven by a piezoelectric actuator. This control methodology is proposed for tracking desired motion trajectories in view of the problems of unknown or uncertain system parameters, non-linearities including the hysteresis effect, and external disturbances in the system. In this paper, a lumped parameter dynamic model is established for the formulation of the proposed control methodology. The convergence of the position and velocity tracking errors to zero is assured by the approach in the presence of the aforementioned conditions. The stability of the closed-loop system is proven theoretically, and a precise tracking performance in following a desired motion trajectory is demonstrated in the experimental study.

[1]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[2]  Chih-Lyang Hwang,et al.  Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control , 2005, IEEE Transactions on Control Systems Technology.

[3]  P. Gao,et al.  A new piezodriven precision micropositioning stage utilizing flexure hinges , 1999 .

[4]  Y. Somov Modelling physical hysteresis and control of a fine piezo-drive , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[5]  Bijan Shirinzadeh,et al.  Adaptive Control Strategy for Micro/Nano Manipulation Systems , 2006, IAS.

[6]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[7]  Shuo-Hung Chang,et al.  An Ultra-Precision XYθZ Piezo-Micropositioner Part I: Design and Analysis , 1999 .

[8]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[9]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[10]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[11]  Weiping Li,et al.  Adaptive manipulator control a case study , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[12]  Bijan Shirinzadeh,et al.  Kinematics and stiffness analyses of a flexure-jointed planar micromanipulation system for a decoupled compliant motion , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  J. Paros How to design flexure hinges , 1965 .

[14]  Tien-Fu Lu,et al.  A three-DOF compliant micromotion stage with flexure hinges , 2004, Ind. Robot.

[15]  S H Chang,et al.  An ultra-precision XYtheta(Z) piezo-micropositioner. I. Design and analysis. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[16]  Il Hong Suh,et al.  Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges , 2002, IEEE Trans. Robotics Autom..

[17]  Bijan Shirinzadeh,et al.  Robust motion tracking control of piezoelectric actuation systems , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[18]  Faa-Jeng Lin,et al.  Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism , 2004 .

[19]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[20]  Hwee Choo Liaw,et al.  Special class of positive definite functions for formulating adaptive micro/nano manipulator control , 2006, 9th IEEE International Workshop on Advanced Motion Control, 2006..

[21]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .