Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram

Schur process is a time-dependent analog of the Schur measure on partitions studied in math.RT/9907127. Our first result is that the correlation functions of the Schur process are determinants with a kernel that has a nice contour integral representation in terms of the parameters of the process. This general result is then applied to a particular specialization of the Schur process, namely to random 3-dimensional Young diagrams. The local geometry of a large random 3-dimensional diagram is described in terms of a determinantal point process on a 2-dimensional lattice with the incomplete beta function kernel (which generalizes the discrete sine kernel). A brief discussion of the universality of this answer concludes the paper.

[1]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[2]  T. Apostol Introduction to analytic number theory , 1976 .

[3]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[4]  R. Pemantle,et al.  Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.

[5]  Quantum Dilogarithm , 1993, hep-th/9310070.

[6]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[7]  R. Kenyon Local statistics of lattice dimers , 2001, math/0105054.

[8]  R. Kenyon The Planar Dimer Model With Boundary: A Survey , 1998 .

[9]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[10]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[11]  A. Okounkov Infinite wedge and random partitions , 1999, math/9907127.

[12]  T. Mansour,et al.  Involutions avoiding the class of permutations in Sk with prefix 12 , 2007 .

[13]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[14]  Michael Baake,et al.  The planar dimer model with boundary: A survey , 2000 .

[15]  J. Propp,et al.  A variational principle for domino tilings , 2000, math/0008220.

[16]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[17]  R. Cerf,et al.  The Low-Temperature Expansion of the Wulff Crystal in the 3D Ising Model , 2001 .

[18]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[19]  Step Fluctuations for a Faceted Crystal , 2002, cond-mat/0212456.

[20]  Symmetric Functions and Random Partitions , 2003, math/0309074.