Algebraic solutions of the Hirota bilinear form for the Korteweg-de Vries and Boussinesq equations
暂无分享,去创建一个
[1] Keshlan S. Govinder,et al. Hidden and Not So Hidden Symmetries , 2012, J. Appl. Math..
[2] D. Korteweg,et al. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .
[3] D. Tsoubelis,et al. On the systematic approach to the classification of differential equations by group theoretical methods , 2009 .
[4] F. Lambert,et al. Bilinear integrable systems : from classical to quantum, continuous to discrete , 2006 .
[5] Hirota Ryogo,et al. N-Soliton Solution of the K-dV Equation with Loss and Nonuniformity Terms , 1976 .
[6] R. T. Sharp,et al. Invariants of real low dimension Lie algebras , 1976 .
[7] Jiří Patera,et al. Continuous subgroups of the fundamental groups of physics. I. General method and the Poincaré group , 1975 .
[8] Ryogo Hirota,et al. A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .
[9] R. Hirota. Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .
[10] Ryogo Hirota,et al. Exact N‐soliton solutions of the wave equation of long waves in shallow‐water and in nonlinear lattices , 1973 .
[11] Ryogo Hirota,et al. Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons , 1972 .
[12] J. Boussinesq,et al. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .