Robust Ordinal Embedding from Contaminated Relative Comparisons

Existing ordinal embedding methods usually follow a twostage routine: outlier detection is first employed to pick out the inconsistent comparisons; then an embedding is learned from the clean data. However, learning in a multi-stage manner is well-known to suffer from sub-optimal solutions. In this paper, we propose a unified framework to jointly identify the contaminated comparisons and derive reliable embeddings. The merits of our method are three-fold: (1) By virtue of the proposed unified framework, the sub-optimality of traditional methods is largely alleviated; (2) The proposed method is aware of global inconsistency by minimizing a corresponding cost, while traditional methods only involve local inconsistency; (3) Instead of considering the nuclear norm heuristics, we adopt an exact solution for rank equality constraint. Our studies are supported by experiments with both simulated examples and real-world data. The proposed framework provides us a promising tool for robust ordinal embedding from the contaminated comparisons.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Lalit Jain,et al.  Finite Sample Prediction and Recovery Bounds for Ordinal Embedding , 2016, NIPS.

[3]  Yiyuan She,et al.  Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.

[4]  Mary Rouncefield,et al.  Condorcet's Paradox , 1989 .

[5]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[6]  Robert D. Nowak,et al.  Active Ranking using Pairwise Comparisons , 2011, NIPS.

[7]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[9]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[10]  Daniel P. W. Ellis,et al.  The Quest for Ground Truth in Musical Artist Similarity , 2002, ISMIR.

[11]  Anthony Man-Cho So,et al.  Low-Rank Semidefinite Programming: Theory and Applications , 2016, Found. Trends Optim..

[12]  Wei Liu,et al.  Stochastic Non-convex Ordinal Embedding with Stabilized Barzilai-Borwein Step Size , 2017, AAAI.

[13]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[14]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[15]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[16]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[17]  David J. Kriegman,et al.  Generalized Non-metric Multidimensional Scaling , 2007, AISTATS.

[18]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[19]  Qingming Huang,et al.  HodgeRank on Random Graphs for Subjective Video Quality Assessment , 2012, IEEE Transactions on Multimedia.

[20]  Pietro Perona,et al.  The Multidimensional Wisdom of Crowds , 2010, NIPS.

[21]  Maya R. Gupta,et al.  Similarity-based Classification: Concepts and Algorithms , 2009, J. Mach. Learn. Res..

[22]  Paul N. Bennett,et al.  Pairwise ranking aggregation in a crowdsourced setting , 2013, WSDM.

[23]  Ulrike von Luxburg,et al.  Local Ordinal Embedding , 2014, ICML.

[24]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[25]  Ulrike von Luxburg,et al.  Uniqueness of Ordinal Embedding , 2014, COLT.

[26]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[27]  Jun Zhu,et al.  Video-to-Video Translation with Global Temporal Consistency , 2018, ACM Multimedia.

[28]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[29]  Kilian Q. Weinberger,et al.  Stochastic triplet embedding , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[30]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[31]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[32]  Adam Tauman Kalai,et al.  Adaptively Learning the Crowd Kernel , 2011, ICML.

[33]  Ehsan Amid,et al.  Multiview Triplet Embedding: Learning Attributes in Multiple Maps , 2015, ICML.

[34]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[35]  Gert R. G. Lanckriet,et al.  Learning Multi-modal Similarity , 2010, J. Mach. Learn. Res..

[36]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .